
Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th

5. Channel Coding

1

Digital Communication Systems
ECS 452

Office Hours:
Check Google Calendar on the
course website.
Dr.Prapun’s Office:
6th floor of Sirindhralai building,
BKD

Review: Channel Encoder and Decoder

2

N
oi
se
 &
 In

te
rf
er
en

ce

Information
Source

Destination

Channel

Received
Signal

Transmitted
Signal

Message

Recovered Message

Source
Encoder

Channel
Encoder

Digital
Modulator

Source
Decoder

Channel
Decoder

Digital
Demodulator

Transmitter

Receiver

Add
systematic
redundancy

X: channel input

Y: channel output

0

1

0

1

p

1-p

p

1-p

S

𝐒

System Model for Chapter 5

3

Channel

Received
Signal

Transmitted
Signal

Message (Data block)

Recovered Message

Channel
Encoder

Digital
Modulator

Channel
Decoder

Digital
Demodulator

Add
systematic
redundancy

x,c

0

1

0

1

p

1-p

p

1-p

m,d,b,s

𝐦, 𝐝, 𝐛, 𝐬

minimum
distance decoder

k bits k bits k bits

n bits n bits n bits

Binary Symmetric
Channel with
p < 0.5

𝒔 𝐬
𝐬

𝐬

𝐱

𝐱

𝐱

𝐱

𝑀 2 possibilities

Choose 𝑀 2 from
2 possibilities to be
used as codewords.

y

Vector Notation

4

 : column vector

 : row vector
 Subscripts represent element indices inside individual

vectors.
 and refer to the ith elements inside the vectors and ,

respectively.

 When we have a list of vectors, we use superscripts in
parentheses as indices of vectors.

 is a list of M column vectors
 is a list of M row vectors

 and refer to the ith vectors in the corresponding lists.

𝑣
𝑣
⋮

𝑣
⋮

𝑣
𝑟 , 𝑟 , … , 𝑟 , … 𝑟

0, 0: the zero vector
(the all-zero vector)

1, 1: the one vector
(the all-one vector)

Channel Decoding

6

 Recall

1. MAP decoder is the optimal decoder.
2. When the codewords are equally-likely, the ML decoder the same as the MAP decoder; hence it is also

optimal.
3. When the crossover probability of the BSC p is < 0.5,

ML decoder is the same as the minimum distance decoder.

 In this chapter, we assume the use of minimum distance
decoder.

 𝐱 𝐲 arg min
𝐱

𝑑 𝐱, 𝐲

 Also, in this chapter, we will focus
 less on probabilistic analysis,
 but more on explicit codes.

MAP decoder
is optimal

ML decoder is
optimal

Codewords
are equally
likely

Min distance
decoder is optimal

BSC with
𝑝 0.5

Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th

5.1 Binary Linear Block Codes

7

Digital Communication Systems
ECS 452

Review: Block Encoding

8

 We mentioned the general form of channel coding over BSC.

 In particular, we looked at the general form of block
codes.

 (n,k) codes: n-bit blocks are used to conveys k-info-bit blocks
 Assume n > k

 Rate: .

Block Encoder

k bits k bits k bits n bits n bits n bits

Recall that the capacity of BSC is 𝐶 1 𝐻 𝑝 .
For 𝑝 ∈ 0,1 , we also have 𝐶 ∈ 0,1 .
Achievable rate is < 1.

Max. achievable rate

Code length
“Dimension” of the code

codewords “messages”

System Model for Section 5.1

9

N
oi
se
 &
 In

te
rf
er
en

ce

Channel

Received
Signal

Transmitted
Signal

Message

Recovered Message

Channel
Encoder

Digital
Modulator

Channel
Decoder

Digital
Demodulator

Transmitter

Receiver

Add
systematic
redundancy

x: channel input

y: channel output

0

1

0

1

p

1-p

p

1-p

s

𝐬

k bits
n bits

n bitsk bits

10

 = the collection of all codewords for the code considered.
 Each n-bit block is selected from .
 The message (data block) has k bits, so there are 2k possibilities.
 A reasonable code would not assign

the same codeword to different messages.
 Therefore, there are 2k (distinct) codewords in .

 Ex. Repetition code with n = 3

𝒔 𝐬
𝐬

𝐬

𝐱

𝐱

𝐱

𝐱

𝑀 2 possibilities

Choose 𝑀 2 from
2 possibilities to be
used as codewords.

GF(2)

12

 The construction of the codes can be expressed in matrix form
using the following definition of addition and multiplication
of bits:

 These are modulo-2 addition and modulo-2 multiplication,
respectively.

 The operations are the same as the exclusive-or (XOR)
operation and the AND operation.
 We will simply call them addition and multiplication so that we can

use a matrix formalism to define the code.
 The two-element set {0, 1} together with this definition of

addition and multiplication is a number system called a finite
field or a Galois field, and is denoted by the label GF(2).

0 1 0 1
0 0 1 0 0 0
1 1 0 1 0 1

Galois theory

Modulo operation

13

 The modulo operation finds the remainder after division of
one number by another (sometimes called modulus).

 Given two positive numbers, (the dividend) and (the
divisor),

 (abbreviated as) is the remainder of the
division of by .

 “ ”

 “ ”
 In MATLAB, mod(5,2) = 1.

 Congruence relation
 5 ≡ 1 mod 2

6

23

836

18
5

13
divisor

quotient
dividend

remainder
2 5
4
1

2
divisor

quotient

dividend

remainder

GF(2) and modulo operation

14

 Normal addition and multiplication (for 0 and 1):

 Addition and multiplication in GF(2):

0 1 0 1
0 0 1 0 0 0
1 1 2 1 0 1

0 1 0 1
0 0 1 0 0 0
1 1 0 1 0 1

GF(2)

15

 The construction of the codes can be expressed in matrix form
using the following definition of addition and multiplication of
bits:

 Note that

1
0

0

x

x x
x

x x

x

x

The property above implies

By definition, “ 𝑥” is something that, when added with 𝑥, gives 0.

 Extension: For vector and matrix, apply the operations to the elements
the same way that addition and multiplication would normally apply
(except that the calculations are all in GF(2)).

0 1 0 1
0 0 1 0 0 0
1 1 0 1 0 1

0 ⊕ 0 0
1 ⊕ 0 1
0 ⊕ 1 1
1 ⊕ 1 0
0 ⊕ 0 0
1 ⊕ 1 0

Examples

16

 Normal vector addition:

 Vector addition in GF(2):

1 1 2 1
2 3 0 1

1 2 2 2

1 0 1 1
0 1 0 1

1 1 1 0

Alternatively, one can also apply
normal vector addition first, then
apply “mod 2” to each element:

⊕
1 0 1 1
0 1 0 1

1 1 1 2

1 1 1 0

mod 2

Examples

17

 Normal matrix multiplication:

 Matrix multiplication in GF(2):

7 4 3
2 5 6
1 8 9

2 4
3 8
7 6

23 14
31 4
41 6

7 2 4 3 + 3 7 14 12 21

1 0 1
0 0 1
1 1 1

1 1
0 1
1 0

0 1
1 0
0 0

1 · 1 0 · 0 1 · 1 101 Alternatively, one can also apply normal
matrix multiplication first, then apply
“mod 2” to each element:

1 0 1
0 0 1
1 1 1

1 1
0 1
1 0

2 1
1 0
2 2

 0 1
1 0
0 0

BSC and the Error Pattern

30

 For one use of the channel,

 Again, to transmit k information bits, the channel is used n
times.

BSCx y

Encoderb x BSC y

 y x e

error pattern

1 k 1 n

Its nonzero elements mark the
positions of transmission error in y

Additional Properties in GF(2)

31

 The following statements are equivalent
1.
2.
3.

 The following statements are equivalent
1.
2.
3.

 In particular, because , if we are given two
quantities, we can find the third quantity by summing the
other two.

Having one of these is the same
as having all three of them.

Having one of these is the same
as having all three of them.

Linear Block Codes

32

 Definition: is a (binary) linear (block) code if and
only if forms a vector (sub)space (over GF(2)).
 Equivalently, this is the same as requiring that

 Note that any (non-empty) linear code must contain 0.

 Ex. The code that we considered in Problem 5 of HW4 is

Is it a linear code?

In case you forgot about the concept of vector space,…

f and then

 00000,01000,10001,11111

Ex. Checking Linearity

33

 00000,01000,10001,11111

 Step 1: Check that .
 OK for this example.

 Step 2: Check that
if 𝐱 and 𝐱 ∈ , then 𝐱 𝐱 ∈ .

 00000 01000 10001 11111

00000

01000

10001

11111

Ex. Checking Linearity

36

 We have checked that
 00000,01000,10001,11111
is not linear.

 Change one codeword in to make the code linear.

 00000

00000

Linear Block Codes: Motivation (1)

39

 Why linear block codes are popular?

 Recall: General block encoding
 Characterized by its codebook.

 Can be realized by combinational/combinatorial circuit.
 If lucky, can used K-map to simplify the circuit.

𝒔 𝐬
𝐬

𝐬

𝐱

𝐱

𝐱

𝐱

𝑀 2 possibilities

Choose 𝑀 2 from
2 possibilities to be
used as codewords.

[S
ee

 S
ec

tio
n

3.
5

of
 th

e
le

ct
ur

e
no

te
s.

]

Linear Block Codes: Motivation (2)

40

 Why linear block codes are popular?

 Linear block encoding is the same as matrix multiplication.
 See next slide.
 The matrix replaces the table for the codebook.

 The size of the matrix is only bits.
 Compare this against the table (codebook) of size 2 𝑘 𝑛 bits for

general block encoding.

 Linearity easier implementation and analysis

 Performance of the class of linear block codes is similar to
performance of the general class of block codes.
 Can limit our study to the subclass of linear block codes

without sacrificing system performance.

Example

41

 00000,01000,10001,11001

 Let

 Find bG when b = [0 0].

 Find bG when b = [0 1].

 Find bG when b = [1 0].

 Find bG when b = [1 1].

1
0 0
0

0 1 0
00 1

G

All possible two-bit vectors

Block Matrices

42

 A block matrix or a partitioned matrix is a matrix that
is interpreted as having been broken into sections called
blocks or submatrices.

 Examples:

10 6 6 4 3
9 7 3 5 9

2 2 5 10 2 10 2 5
3 3 4 5 10 5 3 6
3 3 4 1 1 5 5 6
7 2 5 3 10 6 10 3
8 3 6 9 8 3 6 5

A B
C D

E F

Ex: Block Matrix Multiplications

44

10 6 6 4 3
9 7 3 5 9

2 2 5 10 2 10 2 5
3 3 4 5 10 5 3 6
3 3 4 1 1 5 5 6
7 2 5 3 10 6 10 3
8 3 6 9 8 3 6 5

108 73 136 175 150 193 126 149
155 85 164 224 213 197 158 165

A B
C D

E F

AC+BE AD+BF

10 6 6 4 3
9 7 3 5 9

2 2 5 10 2 10 2 5
3 3 4 5 10 5 3 6
3 3 4 1 1 5 5 6
7 2 5 3 10 6 10 3
8 3 6 9 8 3 6 5

108 73 136 175 150 193 126 149
155 85 164 224 213 197 158 165

X G H

XG XH

From to

46

 

 Any codeword is simply a linear combination of the rows
of G.
 The weights are given by the bits in the message

Linear Combination in GF(2)

47

 A linear combination is an expression constructed from a
set of terms by multiplying each term by a constant (weight)
and adding the results.

 For example, a linear combination of x and y would be any
expression of the form ax + by, where a and b are constants.

 General expression:

 In GF(2), is limited to being 0 or 1. So, a linear
combination is simply a sum of a sub-collection of the
vectors.

Linear Block Codes: Generator Matrix

48

For any linear code, there is a matrix

called the generator matrix
such that, for any codeword , there is a message vector
which produces by

=  

𝐠

𝐠
⋮

𝐠

 

mod-2 summation

Note:
(1) Any codeword can be expressed as a linear combination of the

rows of G
(2)

Note also that, given a matrix 𝐆, the (block)
code that is constructed by (2) is always linear.

49

Fact: If a code is generated by plugging in every possible b into x bG , then the code will automatically
be linear.

Proof

If G has k rows. Then, b will have k bits. We can list them all as 1 2 2, , ,
k

b b b . The corresponding codewords
are

 i ix b G for 1,2, , 2ki .

Let’s take two codewords, say, 1ix and 2ix . By construction, 1 1i ix b G and 2 2i ix b G . Now, consider the
sum of these two codewords:

 1 2 1 2 1 2i i i i i i x x b G b G b b G

Note that because we plug in every possible b to create this code, we know that 1 2i ib b should be one of these

b . Let’s suppose 1 2 3i i i b b b for some 3ib . This means

 1 2 3i i i x x b G .

But, again, by construction, 3ib G gives a codeword 3ix in this code. Because the sum of any two codewords is
still a codeword, we conclude that the code is linear.

Linear Block Code: Example

50

 Find the codeword for the message b = [1 0 0]

 Find the codeword for the message b = [0 1 1]

 How many codewords do this code have?

1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 0

G

Linear Block Code: Codebook

51

𝐱 𝐛𝐆 𝑏 𝑏 𝑏
1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 0

𝑏 , 𝑏 , 𝑏 , 𝑏 ⊕ 𝑏 , 𝑏 ⊕ 𝑏 , 𝑏 ⊕ 𝑏

𝐛 𝐱

0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 1 0
0 1 0 0 1 0 0 1 1
0 1 1 0 1 1 1 0 1
1 0 0 1 0 0 1 0 1
1 0 1 1 0 1 0 1 1
1 1 0 1 1 0 1 1 0
1 1 1 1 1 1 0 0 0

1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 0

G

MATLAB: Codebook

52

𝐛 𝐱

0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 1 0
0 1 0 0 1 0 0 1 1
0 1 1 0 1 1 1 0 1
1 0 0 1 0 0 1 0 1
1 0 1 1 0 1 0 1 1
1 1 0 1 1 0 1 1 0
1 1 1 1 1 1 0 0 0

function [B C] = blockCodebook(G)
[k n] = size(G);
% All data words
B = dec2bin(0:2^k-1)-'0';
% All codewords
C = mod(B*G,2);
end

G = [1 0 0 1 0 1; 0 1 0 0 1 1; 0 0 1 1 1 0];
[B C] = blockCodebook(G)

1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 0

G

Linear Block Code: Example

53

 Find the codeword for the message b = [1 0 0 0]

 Find the codeword for the message b = [0 1 1 0]

 How many codewords do this code have?

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 0 1 0 1 1 0
1 0 1 0 1 0 1

G

MATLAB: Codebook

54

function [B C] = blockCodebook(G)
[k n] = size(G);
% All data words
B = dec2bin(0:2^k-1)-'0';
% All codewords
C = mod(B*G,2);
end

G = [1 1 1 0 0 0 0; 1 0 0 1 1 0 0; 0 0 1 0 1 1 0; 1 0 1 0 1 0 1];
[B C] = blockCodebook(G)

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 0 1 0 1 1 0
1 0 1 0 1 0 1

G

𝐛 𝐱
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 1 0 1
0 0 1 0 0 0 1 0 1 1 0
0 0 1 1 1 0 0 0 0 1 1
0 1 0 0 1 0 0 1 1 0 0
0 1 0 1 0 0 1 1 0 0 1
0 1 1 0 1 0 1 1 0 1 0
0 1 1 1 0 0 0 1 1 1 1
1 0 0 0 1 1 1 0 0 0 0
1 0 0 1 0 1 0 0 1 0 1
1 0 1 0 1 1 0 0 1 1 0
1 0 1 1 0 1 1 0 0 1 1
1 1 0 0 0 1 1 1 1 0 0
1 1 0 1 1 1 0 1 0 0 1
1 1 1 0 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1

Review: Linear Block Codes

55

 Given a list of codewords for a code , we can determine whether
 is linear by
 Definition: if 𝐱 and 𝐱 ∈ , then 𝐱 𝐱 ∈
 Shortcut:
 First check that must contain 0.
 Then, check only pairs of the non-zero codewords.

 One check = three checks

 Codewords can be generated by a generator matrix

 𝐱 𝐛𝐆 𝑏 𝐠 where 𝐠 is the ith row of 𝐆

 Codebook can be generated by
 working row-wise: generating each codeword one-by-one, or
 working column-wise: first, reading, from 𝐆, how each bit in the

codeword is created from the bits in 𝐛; then, in the codebook, carry
out the operations on columns 𝐛.

Linear Block Codes: Examples

56

 Repetition code:

 Single-parity-check code:

parity bit

𝑏 𝐱
0 0 0 0
1 1 1 1

𝐛 𝐱
0 0 0 0 0
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0

Vectors representing 3-bit codewords

57

Triple-repetition code Single-Parity-check code

Representing the codewords in the two examples on the previous slide as vectors:

 3 21 1 1P p p p 3 21 1 3 1P p p p

P(
E)

Recall: Achievable Performance

58

BSC with

repetition code with 𝑛 5 in Exercise 9
0.0579

0.1040

0.2000

Optimal codes that we
found in Exercise 9

Example given in Exercise 9

0.2832

0.2218

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Rate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Achievable Performance

59

BSC with

𝐶 1 𝐻 𝑝 0.2781

Triple-repetition code
is optimal among all codes
with 𝑛 3, 𝑘 1.

Single-Parity-check code
𝑘 2

is optimal among all codes
with 𝑛 3, 𝑘 2.

Even Parity vs. Odd Parity

60

 Parity bit checking is used occasionally for transmitting ASCII
characters, which have 7 bits, leaving the 8th bit as a parity
bit.

 Two options:
 Even Parity: Added bit ensures an even number of 1s in each

codeword.
 A: 10000010

 Odd Parity: Added bit ensures an odd number of 1s in each
codeword.
 A: 10000011

Related Idea:

Even Parity vs. Odd Parity

61

 Even parity and odd parity are properties of a codeword (a
vector), not a bit.

 Note: The generator matrix 𝐆 𝐈 ; 𝟏 previously
considered produces even parity codeword

𝐱 𝐛 ; 𝑏

 Q: Consider a code that uses odd parity. Is it linear?

Error Control using Parity Bit

62

 If an odd number of bits (including the parity bit) are
transmitted incorrectly, the parity will be incorrect, thus
indicating that a parity error occurred in the transmission.

 Ex.
 Suppose we use even parity.

 Consider the codeword 10000010

 Suitable for detecting errors; cannot correct any errors

Error Detection

64

 Error detection: the determination of whether errors are present in a
received word
 usually by checking whether

the received word is one of the
valid codewords.

 When a two-way channel exists between source and destination, the
receiver can request retransmission of information containing
detected errors.
 This error-control strategy is called automatic-repeat-request (ARQ).

 An error pattern is undetectable if and only if it causes the received
word to be a valid codeword other than that which was transmitted.
 Ex: In single-parity-check code, error will be undetectable when the number

of bits in error is even.

Two types of error control:

1. error detection

2. error correction

𝒔 𝐬
𝐬

𝐬

𝐱

𝐱

𝐱

𝐱

𝑀 2 possibilities

Choose 𝑀 2 from
2 possibilities to be
used as codewords.

Example: (3,2) Single-parity-check code

65

 If we receive 001, 111, 010,
or 100, we know that
something went wrong in
the transmission.

 Suppose we transmitted 101
but the error pattern is 110.
 The received vector is 011
 011 is still a valid

codeword.
 The error is undetectable.

Error Correction

66

 In FEC (forward error correction) system, when the
decoder detects error, the arithmetic or algebraic structure
of the code is used to determine which of the valid
codewords was transmitted.

 It is possible for a detectable error pattern to cause the
decoder to select a codeword other than that which was
actually transmitted. The decoder is then said to have
committed a decoding error.

Square array for error correction by
parity checking.

67

 The codeword is formed by
arranging k message bits in
a square array
whose rows and columns
are checked by parity
bits.

 A transmission error in one
message bit causes a row
and column parity failure
with the error at the
intersection, so single
errors can be corrected.

[Carlson & Crilly, p 594]

Example: square array

68

 parity bits.

[Carlson & Crilly, p 594]

_ _ _ _ _ _

Review: Even Parity

69

 A binary vector (or a collection of 1s and 0s) has even
parity if and only if the number of 1s in there is even.
 Suppose we are given the values of all the bits except one bit.
 We can force the vector to have even parity by setting the value of the

remaining bit to be the sum of the other bits.

[1 0 1 1 0 _]
Square array Single-parity-check code

Weight and Distance

70

 The weight of a vector is the number of nonzero coordinates in
the vector.
 The weight of a vector 𝐱 is commonly written as 𝒘 𝐱 .
 Ex. 𝑤 010111

 For BSC with cross-over probability 𝑝 0.5, error pattern with
smaller weights (less #1s) are more likely to occur.

 The Hamming distance between two n-bit blocks is the
number of coordinates in which the two blocks differ.
 Ex. 𝑑 010111,011011

 Note:
 The Hamming distance between any two vectors equals the weight of their

sum.
 The Hamming distance between the transmitted codeword 𝐱 and the

received vector 𝐲 is the same as the weight of the corresponding error
pattern 𝐞.

Probability of Error Patterns

71

 Recall: We assume that the channel is BSC with crossover probability 𝒑.
 For the discrete memoryless channel that we have been considering

since Chapter 3,
 the probability that error pattern 𝐞 00101 is

1 𝑝 1 𝑝 𝑝 1 𝑝 𝑝.
 Note also that the error pattern is independent from the transmitted vector

𝐱
 In general, from Section 3.4,

the probability the error pattern 𝐞 occurs is

𝑝 𝐱,𝐲 1 𝑝 𝐱,𝐲 𝑝
1 𝑝

𝐱,𝐲

1 𝑝
𝑝

1 𝑝

𝐞

1 𝑝

 If we assume 𝒑 𝟎. 𝟓,
the error patterns that have larger weights are less likely to occur.
 This also supports the use of minimum distance decoder.

Review: Minimum Distance (dmin)

72

The minimum distance (dmin) of a block code is the
minimum Hamming distance between all pairs of distinct
codewords.

 Ex. Problem 5 of HW4:

 Ex. Repetition code:

𝒅 00000 01000 10001 11111

00000 1 2 5

01000 3 4

10001 3

11111

𝒅𝐦𝐢𝐧 𝟏

MATLAB: Distance Matrix and dmin

73

function D = distAll(C)

M = size(C,1);
D = zeros(M,M);
for i = 1:M-1

for j = (i+1):M
D(i,j) = sum(mod(C(i,:)+C(j,:),2));

end
end
D = D+D';

>> C=[0 0 0 0 0; 0 1 0 0 0; ...
1 0 0 0 1; 1 1 1 1 1];

>> distAll(C)
ans =

0 1 2 5
1 0 3 4
2 3 0 3
5 4 3 0

>> dmin = dmin_block(C)
dmin =

1

function dmin = dmin_block(C)
D = distAll(C);
Dn0 = D(D>0);
dmin = min(Dn0);

This can be used to find 𝑑 for all block codes.
There is no assumption about linearity of the
code. Soon, we will see that we can simplify the
calculation when the code is known to be linear.

dmin for linear block code

74

 For any linear block code, the minimum distance (dmin)
can be found from the minimum weight of its nonzero
codewords.

 So, instead of checking 2
2

pairs,

simply check the weight of the 2 codewords.

function dmin = dmin_linear(C)
w = sum(C,2);
w = w([w>0]);
dmin = min(w);

Proof

75

Because the code is linear, for any two distinct codewords 𝐜 1 and 𝐜 2 , we know that 𝐜 1 ⊕ 𝐜 2 ∈ ;
that is 𝐜 1 ⊕ 𝐜 2 𝐜 for some nonzero 𝐜 ∈ . Therefore,

𝑑 𝐜 1 , 𝐜 2 𝑤 𝐜 1 ⊕ 𝐜 2 𝑤 𝐜 for some nonzero 𝐜 ∈ .

This implies

min
𝐜 1 ,𝐜 2 ∈
𝐜 1 𝐜 2

𝑑 𝐜 1 , 𝐜 2 min
𝐜∈.
𝐜 𝟎

𝑤 𝐜 .

Note that inequality is used here because we did not show that 𝐜 1 ⊕ 𝐜 2 can produce all possible
nonzero 𝐜 ∈ .

Next, for any nonzero 𝐜 ∈ , note that

𝑑 𝐜, 𝟎 𝑤 𝐜 ⊕ 𝟎 𝑤 𝐜 .

Note that 𝐜, 𝟎 is just one possible pair of two distinct codewords. This implies

min
𝐜 1 ,𝐜 2 ∈
𝐜 1 𝐜 2

𝑑 𝐜 1 , 𝐜 2 min
𝐜∈.
𝐜 𝟎

𝑤 𝐜 .

min
𝐜 1 ,𝐜 2 ∈
𝐜 1 𝐜 2

𝑑 𝐜 1 , 𝐜 2 min
𝐜∈.
𝐜 𝟎

𝑤 𝐜

Example

76

0 1 1 1
1 0 0 1

G

 2 1 1 2

2

1

1

0 1 1 1
1 0 0 1

b

b b

b b b b

 x bG

00
01
10
11

0000
1001
0111
1110

b x

Example

77

𝐛 𝐱

1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 0

G

>> G = [1 0 0 1 0 1; 0 1 0 0 1 1; 0 0 1 1 1 0];
>> [B C] = blockCodebook(G);
>> dmin = dmin_block(C)
dmin =

3
>> dmin = dmin_linear(C)
dmin =

3

0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 1 0 3
0 1 0 0 1 0 0 1 1 3
0 1 1 0 1 1 1 0 1 4
1 0 0 1 0 0 1 0 1 3
1 0 1 1 0 1 0 1 1 4
1 1 0 1 1 0 1 1 0 4
1 1 1 1 1 1 0 0 0 3

𝑤 𝐱

Example

78

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 0 1 0 1 1 0
1 0 1 0 1 0 1

G

𝐛 𝐱

>> G = [1 1 1 0 0 0 0; 1 0 0 1 1 0 0;...
0 0 1 0 1 1 0; 1 0 1 0 1 0 1];

>> [B C] = blockCodebook(G);
>> dmin = dmin_linear(C)
dmin =

3
>> dmin = dmin_block(C)
dmin =

3

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 1 0 1 4
0 0 1 0 0 0 1 0 1 1 0 3
0 0 1 1 1 0 0 0 0 1 1 3
0 1 0 0 1 0 0 1 1 0 0 3
0 1 0 1 0 0 1 1 0 0 1 3
0 1 1 0 1 0 1 1 0 1 0 4
0 1 1 1 0 0 0 1 1 1 1 4
1 0 0 0 1 1 1 0 0 0 0 3
1 0 0 1 0 1 0 0 1 0 1 3
1 0 1 0 1 1 0 0 1 1 0 4
1 0 1 1 0 1 1 0 0 1 1 4
1 1 0 0 0 1 1 1 1 0 0 4
1 1 0 1 1 1 0 1 0 0 1 4
1 1 1 0 0 1 0 1 0 1 0 3
1 1 1 1 1 1 1 1 1 1 1 7

𝑤 𝐱

Visual Interpretation of dmin

81

𝐜𝐜

𝐜

𝐜

𝐜

𝐜

𝐜

𝐜

Recall: Codebook construction
Choose 𝑀 2 from 2
possibilities to be used as
codewords.

Visual Interpretation of dmin

84

 Consider all the (valid) codewords (in the codebook).

 We can find the distances between them.

 We can then find min.

dmin
𝐜𝐜

𝐜

𝐜

𝐜

𝐜

𝐜

𝐜

Visual Interpretation of dmin

85

 When we draw a circle (sphere, hypersphere) of radius
around any codeword, we know that there can not be another
codeword inside this circle.

 The closest codeword is at least away.

dmin
𝐜𝐜

𝐜

𝐜

𝐜

𝐜

𝐜

𝐜

dmin and Error Detection

89

 Suppose codeword is chosen to be transmitted; that is

 The received vector can be calculated from

.

𝐜𝐜

𝐜

𝐜

𝒚 𝒙 ⊕ 𝒆

𝒆

𝒙 𝐜

𝐜

𝐜

𝐜

dmin and Error Detection

90

 When , there is no way that errors can change
a valid codeword into another valid codeword.

𝐜𝐜

𝐜

𝐜

𝒙

𝒆
𝐜

𝐜

𝐜

dmin and Error Detection

92

 For some codewords,
when , it is possible that errors can change a
valid codeword into another valid codeword.

𝐜𝐜

𝐜

𝒙 𝐜

𝒆
𝐜

𝐜

𝐜

𝐜

dmin and Error Detection

93

 To be able to detect all w-bit errors, we need 𝑑 𝑤 1.
 With such a code there is no way that w errors can change a

valid codeword into another valid codeword.
 When the receiver observes an illegal codeword, it can tell that

a transmission error has occurred.

𝐜𝐜

𝐜

𝐜

𝒙

𝒆

When 𝑑 𝑤 , there is no way
that 𝑤 errors can change a valid
codeword into another valid
codeword.

When 𝑑 𝑤 , it is possible
that 𝑤 errors can change a valid
codeword into another valid
codeword.

dmin is an important quantity

95

 To be able to correct all w-bit errors, we need 𝑑 2𝑤 1.
 This way, the legal codewords are so far apart that even with w

changes, the original codeword is still closer than any other
codeword.

dmin

2

𝐜𝐜

𝐜

𝒙 𝐜

𝐜

dmin: two important facts

96

 For any linear block code, the minimum distance (dmin)
can be found from the minimum weight of its nonzero
codewords.

 So, instead of checking 2
2

pairs,

simply check the weight of the 2 codewords.

 A code with minimum distance dmin can
 detect all error patterns of weight w ≤ dmin-1.

 correct all error patterns of weight w ≤ .

the floor function

Example

97

Repetition code with

 We have seen that it has .

 It can detect (at most) ___ errors.

 It can correct (at most) ___ errors.

Example

98

Consider the code

 Is it a linear code?

 dmin =

 It can detect (at most) ___ errors.

 It can correct (at most) ___ errors.

 0000000000, 0000011111, 1111100000, and 1111111111

⊕ 𝐜 𝐜 𝐜 𝐜
𝐜
𝐜

𝐜

𝐜

0000000000

0000011111

1111100000

1111111111

