Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
5. Channel Coding

Office Hours:

Check Google Calendar on the course website.
Dr.Prapun's Office:
6th floor of Sirindhralai building, BKD

Review: Channel Encoder and Decoder

System Model for Chapter 5

$\underline{\mathbf{m}}, \underline{\mathbf{d}}, \underline{\mathbf{b}}, \underline{\mathbf{s}}$

Message (Data block)

$\underline{\mathbf{m}}, \underline{\mathbf{d}}, \mathbf{b}, \underline{\hat{\mathbf{s}}}$
Recovered Message

Vector Notation

- $\overrightarrow{\mathbf{V}}$: column vector

$\overrightarrow{0}, \underline{0}$: the zero vector

 (the all-zero vector)$\overrightarrow{1}, \underline{1}$: the one vector
(the all-one vector)

- $\underline{\mathbf{r}}$: row vector

$$
\left(r_{1}, r_{2}, \ldots, r_{i}, \ldots r_{n}\right)
$$

- Subscripts represent element indices inside individual vectors.
- v_{i} and r_{i} refer to the $i^{\text {th }}$ elements inside the vectors $\overrightarrow{\mathbf{v}}$ and $\underline{\mathbf{r}}$, respectively.
- When we have a list of vectors, we use superscripts in parentheses as indices of vectors.
- $\overrightarrow{\mathbf{v}}^{(1)}, \overrightarrow{\mathbf{v}}^{(2)}, \ldots, \overrightarrow{\mathbf{v}}^{(M)}$ is a list of M column vectors
- $\underline{\mathbf{r}}^{(1)}, \underline{\mathbf{r}}^{(2)}, \ldots, \underline{\mathbf{r}}^{(M)}$ is a list of M row vectors
- $\overrightarrow{\mathbf{v}}^{(i)}$ and $\underline{\mathbf{r}}^{(i)}$ refer to the $i^{\text {th }}$ vectors in the corresponding lists.

Channel Decoding

- Recall

```
MAP decoder
    is optimal
```


ML decoder is
optimal

Min distance
decoder is optimal
Codewords
are equally
likely

MAP decoder is the optimal decoder.
When the codewords are equally-likely, the ML decoder the same as the MAP decoder; hence it is also optimal.
When the crossover probability of the $\mathrm{BSC} p$ is <0.5,
ML decoder is the same as the minimum distance decoder.

- In this chapter, we assume the use of minimum distance decoder.
- $\underline{\hat{\mathbf{x}}}(\underline{\mathbf{y}})=\arg \min _{\underline{\mathbf{x}}} d(\underline{\mathbf{x}}, \underline{\mathbf{y}})$
- Also, in this chapter, we will focus
- less on probabilistic analysis,
- but more on explicit codes.

Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

 prapun@siit.tu.ac.th5.1 Binary Linear Block Codes

Review: Block Encoding

- We mentioned the general form of channel coding over BSC.
- In particular, we looked at the general form of block codes.

- (n, k) codes: \underline{n}-bit blocks are used to conveys k-info-bit blocks
- Assume $n>k$

- Rate: $R=\frac{k}{n}$.

$$
\begin{aligned}
& \text { Recall that the capacity of BSC is } C=1-H(p) \text {. } \\
& \text { For } p \in(0,1) \text {, we also have } C \in(0,1) \text {. } \\
& \text { Achievable rate is }<1 \text {. }
\end{aligned}
$$

System Model for Section 5.1

- $\mathcal{C}=$ the collection of all codewords for the code considered.
- Each n-bit block is selected from \mathcal{C}.
- The message (data block) has k bits, so there are 2^{k} possibilities.
- A reasonable code would not assign the same codeword to different messages.
- Therefore, there are 2^{k} (distinct) codewords in \mathcal{C}.

- Ex. Repetition code with $n=3$

GF(2)

- The construction of the codes can be expressed in matrix form using the following definition of addition and multiplication of bits:

\oplus	0	1
0	0	1
1	1	0

-	0	1
0	0	0
1	0	1

- These are modulo-2 addition and modulo-2 multiplication, respectively.
- The operations are the same as the exclusive-or (XOR) operation and the AND operation.
- We will simply call them addition and multiplication so that we can use a matrix formalism to define the code.
- The two-element set $\{0,1\}$ together with this definition of addition and multiplication is a number system called a finite field or a Galois field, and is denoted by the label GF(2).

Modulo operation

- The modulo operation finds the remainder after division of one number by another (sometimes called modulus).
- Given two positive numbers, a (the dividend) and n (the divisor),
- a modulo \boldsymbol{n} (abbreviated as $\boldsymbol{a} \bmod \boldsymbol{n})$ is the remainder of the division of a by n.
- "83 mod 6" = 5
- " $5 \bmod 2 "=1$
- In MATLAB, $\bmod (5,2)=1$.
quotient 13
divisor $6 \longdiv { 8 3 }$ dividend
- Congruence relation
- $5 \equiv 1(\bmod 2)$

GF(2) and modulo operation

- Normal addition and multiplication (for 0 and 1):

+	0	1						
0	0	1		\times	0			
0	0	0						
1	1	2				\quad	1	0
:---	:---							

- Addition and multiplication in GF(2):

\oplus	0	1			
0	0	1		\bullet	0
0	0	0			
1	1	0		1	0

GF(2)

- The construction of the codes can be expressed in matrix form using the following definition of addition and multiplication of bits:

\oplus	0	1
0	0	1
1	1	0

\bullet	0	1
0	0	0
1	0	1

- Note that

$$
\begin{array}{cl}
x \oplus 0=x & 0 \oplus 0=0 \\
x \oplus 1=\bar{x} & 0 \oplus 1=1 \\
x \oplus 1=0 \\
1 \oplus 1 & =0 \\
x \oplus x=0 & 0 \oplus 0=0 \\
1 \oplus 1=0
\end{array}
$$

The property above implies $\underbrace{-X}=X$
By definition, " $-x$ " is something that, when added with x, gives 0 .

- Extension: For vector and matrix, apply the operations to the elements the same way that addition and multiplication would normally apply (except that the calculations are all in $\mathrm{GF}(2)$).

Examples

- Normal vector addition:

$$
=\begin{array}{lrrr}
{\left[\begin{array}{lrll}
{[1} & -1 & 2 & 1]
\end{array}+\right.} \\
{\left[\begin{array}{lrll}
{[-2} & 3 & 0 & 1]
\end{array}+\right.}
\end{array}
$$

- Vector addition in GF(2):

Alternatively, one can also apply normal vector addition first, then apply "mod 2 " to each element:

Examples

- Normal matrix multiplication:

$$
\begin{gathered}
(7 \times(-2))+(4 \times 3)+(3 \times(-7))=-14+12+(-21) \\
{\left[\begin{array}{lll}
7 & 4 & 3 \\
2 & 5 & 6 \\
1 & 8 & 9
\end{array}\right]\left[\begin{array}{cc}
-2 & 4 \\
3 & -8 \\
-7 & 6
\end{array}\right]=\left[\begin{array}{cc}
-23 & 14 \\
-31 & 4 \\
-41 & -6
\end{array}\right]}
\end{gathered}
$$

- Matrix multiplication in GF(2):
$(1 \cdot 1) \oplus(0 \cdot 0) \oplus(1 \cdot 1)=1 \oplus 0 \oplus 1$
Alternatively, one can also apply normal matrix multiplication first, then apply "mod 2 " to each element:

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right]
$$

$\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 1 & 0 \\ 2 & 2\end{array}\right] \xrightarrow{\bmod 2}\left[\begin{array}{ll}0 & 1 \\ 1 & 0 \\ 0 & 0\end{array}\right]$

BSC and the Error Pattern

- For one use of the channel,

- Again, to transmit k information bits, the channel is used n times.

Additional Properties in GF(2)

- The following statements are equivalent

$$
\text { 1. } a \oplus b=c
$$

2. $a \oplus c=b$
3. $b \oplus c=a$

Having one of these is the same as having all three of them.

- The following statements are equivalent 1. $\underline{\mathbf{a}} \oplus \underline{\mathbf{b}}=\underline{\mathbf{c}}$

2. $\underline{\mathbf{a}} \oplus \underline{\mathbf{c}}=\underline{\mathbf{b}}$
3. $\underline{\mathbf{b}} \oplus \underline{\mathbf{c}}=\underline{\mathbf{a}}$

Having one of these is the same as having all three of them.

- In particular, because $\underline{\mathbf{x}} \oplus \underline{\mathbf{e}}=\boldsymbol{y}$, if we are given two quantities, we can find the third quantity by summing the other two.

Linear Block Codes

- Definition: \mathcal{C} is a (binary) linear (block) code if and only if \mathcal{C} forms a vector (sub)space (over GF(2)).
- Equivalently, this is the same as requiring that

$$
\text { if } \underline{\mathbf{x}}^{(1)} \text { and } \underline{\mathbf{x}}^{(2)} \in \mathcal{C} \text {, then } \underline{\mathbf{x}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)} \in \mathcal{C}
$$

- Note that any (ronempy) linear code \mathcal{C} must contain $\underline{\mathbf{0}}$.
- Ex. The code that we considered in Problem 5 of HW4 is

$$
\mathcal{C}=\{00000,01000,10001,11111\}
$$

Is it a linear code?

Ex. Checking Linearity

- $\mathcal{C}=\{00000,01000,10001,11111\}$
- Step 1: Check that $0 \in \mathcal{C}$.
- OK for this example.
- Step 2: Check that

$$
\text { if } \underline{\mathbf{x}}^{(1)} \text { and } \underline{\mathbf{x}}^{(2)} \in \mathcal{C} \text {, then } \underline{\mathbf{x}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)} \in \mathcal{C} .
$$

\oplus	00000	01000	10001	11111
00000				
01000				
10001				
11111				

Ex. Checking Linearity

- We have checked that $\mathcal{C}=\{00000,01000,10001,11111\}$
is not linear.
- Change one codeword in \mathcal{C} to make the code linear.

\oplus	00000			
00000				

Linear Block Codes: Motivation (1)

- Why linear block codes are popular?
- Recall: General block encoding
- Characterized by its codebook.

- Can be realized by combinational/combinatorial circuit.
- If lucky, can used K-map to simplify the circuit.

Linear Block Codes: Motivation (2)

- Why linear block codes are popular?
- Linear block encoding is the same as matrix multiplication.
- See next slide.
- The matrix replaces the table for the codebook.
- The size of the matrix is only $k \times n$ bits.
- Compare this against the table (codebook) of size $2^{k} \times(k+n)$ bits for general block encoding.
- Linearity \Rightarrow easier implementation and analysis
- Performance of the class of linear block codes is similar to performance of the general class of block codes.
- Can limit our study to the subclass of linear block codes without sacrificing system performance.

Example

- $\mathcal{C}=\{00000,01000,10001,11001\}$
- Let

$$
\mathbf{G}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

- Find $\underline{\mathbf{b}} \mathbf{G}$ when $\underline{\mathbf{b}}=000]$
- Find $\underline{\mathbf{b}} \mathbf{G}$ when $\underline{\mathbf{b}}=\left[\begin{array}{ll}0 & 1\end{array}\right]$.
- Find $\underline{\mathbf{b} G}$ when $\underline{\mathbf{b}}=\left[\begin{array}{ll}1 & 0\end{array}\right]$.
- Find $\underline{\mathbf{b}} \mathbf{G}$ when $\underline{\mathbf{b}}=\left[\begin{array}{ll}1 & 1\end{array}\right]$.

Block Matrices

- A block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices.
- Examples:

$$
\left(\begin{array}{cc}
10 & 6 \\
9 & 7
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
\begin{array}{|lll}
2 & C^{2} & 5 \\
3 & 3 & 4
\end{array} \\
\begin{array}{lll}
3 & 3 & 4 \\
7 & 2 & 5 \\
7 & 3 & 6
\end{array} & \left.\begin{array}{ccccc}
10 & 2 \\
5 & 10 & 5 & 3 & 6 \\
8 & 1 & 5 & 5 & 6 \\
3 & 10 & 6 & 10 & 3 \\
9 & 8 & 3 & 6 & 5
\end{array}\right)
\end{array}\right)
$$

Ex: Block Matrix Multiplications

$$
\begin{aligned}
& =\left(\begin{array}{lll}
108 & 73 & 136 \\
155 & 85 & 164
\end{array}\right)\left(\begin{array}{lllll}
175 & 150 & 193 & 126 & 149 \\
224 & 213 & 197 & 158 & 165
\end{array}\right) \\
& \mathrm{AC}+\mathrm{BE} \quad \mathrm{AD}+\mathrm{BF} \\
& \left(\begin{array}{llll}
10 & 6 \\
9 & 7 & X_{3}^{6} & 4 \\
5 & 3 \\
9
\end{array}\right) \times\left(\begin{array}{llll}
2 & 2 & 5 & 10 \\
3 & 3 & 4 & 5 \\
3 & 3 \mathrm{G} 4 & 1 \\
7 & 2 & 5 & 3 \\
8 & 3 & 6 & 9
\end{array}\right)\left(\begin{array}{cccc}
2 & 10 & 2 & 5 \\
10 & 5 & 3 & 6 \\
1 & 5 \mathrm{H} & 5 & 6 \\
10 & 6 & 10 & 3 \\
8 & 3 & 6 & 5
\end{array}\right) \\
& \left.=\left(\begin{array}{llll}
108 & 73 & 136 & 175 \\
155 & 85 & 164 & 224
\end{array}\right) ~ \begin{array}{llll}
150 & 193 & 126 & 149 \\
213 & 197 & 158 & 165
\end{array}\right)
\end{aligned}
$$

From \underline{b} to $\underline{\mathbf{x}}$

$$
\begin{aligned}
\underline{\mathbf{x}} & =\underline{\mathbf{b}} \mathbf{G}=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{k}
\end{array}\right]\left[\begin{array}{l}
\frac{\underline{\mathbf{g}}^{(1)}}{\underline{\mathbf{g}}^{(2)}} \\
\vdots \\
\frac{\mathbf{g}^{(k)}}{\square}
\end{array}\right]_{k \times n} \\
& =b_{1} \underline{\mathbf{g}}^{(1)} \oplus b_{2} \underline{\mathbf{g}}^{(2)} \oplus \cdots \oplus b_{k} \underline{\mathbf{g}}^{(k)}=\sum_{j=1}^{k} b_{j} \underline{\mathbf{g}}^{(j)}
\end{aligned}
$$

- Any codeword is simply a linear combination of the rows of \mathbf{G}.
- The weights are given by the bits in the message $\underline{\mathbf{b}}$

Linear Combination in GF(2)

- A linear combination is an expression constructed from a set of terms by multiplying each term by a constant (weight) and adding the results.
- For example, a linear combination of x and y would be any expression of the form $a x+b y$, where a and b are constants.
- General expression:

$$
c_{1} \underline{\mathbf{a}}^{(1)}+c_{2} \underline{\mathbf{a}}^{(2)}+\cdots+c_{k} \underline{\mathbf{a}}^{(k)}
$$

- In $\mathrm{GF}(2), c_{i}$ is limited to being 0 or 1 . So, a linear combination is simply a sum of a sub-collection of the vectors.

Linear Block Codes: Generator Matrix

For any linear code, there is a matrix $\mathbf{G}=$
called the generator matrix
 such that, for any codeword $\underline{\mathbf{x}}$, there is a message vector $\underline{\mathbf{b}}$ which produces $\underline{\mathbf{X}}$ by

$$
\underline{\mathbf{x}}=\underline{\mathbf{b} G}=\sum_{j=1}^{k} b_{j} \underline{\mathbf{g}}^{(j)}
$$

Note:

(1) Any codeword can be expressed as a linear combination of the rows of \mathbf{G}

Note also that, given a matrix \mathbf{G}, the (block) code that is constructed by (2) is always linear.

Fact: If a code is generated by plugging in every possible $\underline{\mathbf{b}}$ into $\underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}$, then the code will automatically be linear.

Proof

If \mathbf{G} has k rows. Then, $\underline{\mathbf{b}}$ will have k bits. We can list them all as $\underline{\mathbf{b}}^{(1)}, \underline{\mathbf{b}}^{(2)}, \ldots, \underline{\mathbf{b}}^{\left(2^{k}\right)}$. The corresponding codewords are

$$
\underline{\mathbf{x}}^{(i)}=\underline{\mathbf{b}}^{(i)} \mathbf{G} \text { for } i=1,2, \ldots, 2^{k} .
$$

Let's take two codewords, say, $\underline{\mathbf{x}}^{\left(i_{1}\right)}$ and $\underline{\mathbf{x}}^{\left(i_{2}\right)}$. By construction, $\underline{\mathbf{x}}^{\left(i_{1}\right)}=\underline{\mathbf{b}}^{\left(i_{1}\right)} \mathbf{G}$ and $\underline{\mathbf{x}}^{\left(i_{2}\right)}=\underline{\mathbf{b}}^{\left(i_{2}\right)} \mathbf{G}$. Now, consider the sum of these two codewords:

$$
\underline{\mathbf{x}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{x}}^{\left(i_{2}\right)}=\underline{\mathbf{b}}^{\left(i_{1}\right)} \mathbf{G} \oplus \underline{\mathbf{b}}^{\left(i_{2}\right)} \mathbf{G}=\left(\underline{\mathbf{b}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{b}}^{\left(i_{2}\right)}\right) \mathbf{G}
$$

Note that because we plug in every possible $\underline{\mathbf{b}}$ to create this code, we know that $\underline{\mathbf{b}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{b}}^{\left(i_{2}\right)}$ should be one of these $\underline{\mathbf{b}}$. Let's suppose $\underline{\mathbf{b}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{b}}^{\left(i_{2}\right)}=\underline{\mathbf{b}}^{\left(i_{3}\right)}$ for some $\underline{\mathbf{b}}^{\left(i_{3}\right)}$. This means

$$
\underline{\mathbf{x}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{x}}^{\left(i_{2}\right)}=\underline{\mathbf{b}}^{\left(i_{3}\right)} \mathbf{G} .
$$

But, again, by construction, $\underline{\mathbf{b}}^{\left(i_{3}\right)} \mathbf{G}$ gives a codeword $\underline{\mathbf{x}}^{\left({ }_{3}\right)}$ in this code. Because the sum of any two codewords is still a codeword, we conclude that the code is linear.

Linear Block Code: Example

$$
\mathbf{G}=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

- Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$
- Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$
- How many codewords do this code have?

Linear Block Code: Codebook

$$
\mathbf{G}=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right) \quad \begin{aligned}
\underline{\mathbf{x}} & =\underline{\mathbf{b}} \mathbf{G}=\left(b_{1} b_{2} b_{3}\right)\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right) \\
& =\left(b_{1}, b_{2}, b_{3}, b_{1} \oplus b_{3}, b_{2} \oplus b_{3}, b_{1} \oplus b_{2}\right)
\end{aligned}
$$

$\underline{\mathbf{b}}$				$\underline{\mathbf{x}}$					
0	0	0	0	0	0	0	0	0	
0	0	1	0	0	1	1	1	0	
0	1	0	0	1	0	0	1	1	
0	1	1	0	1	1	1	0	1	
1	0	0	1	0	0	1	0	1	
1	0	1	1	0	1	0	1	1	
1	1	0	1	1	0	1	1	0	
1	1	1	1	1	1	0	0	0	

MATLAB: Codebook

$$
\begin{aligned}
& \mathrm{G}=\left[\begin{array}{llllllllllllllll}
1 & 0 & 0 & 1 & 0 & 1 ; & 1 & 0 & 0 & 1 & 1 ; & 0 & 0 & 1 & 1 & 0
\end{array}\right] ; \\
& {[B C]=\operatorname{block} \operatorname{Cod} \text { ebook }(\mathrm{G})}
\end{aligned}
$$

function [BC] = blockCodebook(G)
[k n] = size(G);
\% All data words
B = dec2bin(0:2^k-1)-'0';
\% All codewords
$C=\bmod \left(B^{*} G, 2\right)$;
end

$$
\mathbf{G}=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

$\underline{\mathbf{b}}$				$\underline{\mathbf{x}}$					
0	0	0	0	0	0	0	0	0	
0	0	1	0	0	1	1	1	0	
0	1	0	0	1	0	0	1	1	
0	1	1	0	1	1	1	0	1	
1	0	0	1	0	0	1	0	1	
1	0	1	1	0	1	0	1	1	
1	1	0	1	1	0	1	1	0	
1	1	1	1	1	1	0	0	0	

Linear Block Code: Example

$$
\mathbf{G}=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

- Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$
- Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$
- How many codewords do this code have?

MATLAB: Codebook

$\mathrm{G}=[11110000 ; 1001100 ; 0010110 ; 1010101] ;$ [B C] = blockCodebook(G)

```
function [B C] = blockCodebook(G)
[k n] = size(G);
% All data words
B = dec2bin(0:2^k-1)-'0';
% All codewords
C = mod(B*G,2);
end
```

$$
\mathbf{G}=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

$\underline{\mathbf{b}}$				$\underline{\mathbf{x}}$						
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	1	0	1	0	1
0	0	1	0	0	0	1	0	1	1	0
0	0	1	1	1	0	0	0	0	1	1
0	1	0	0	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0	1
0	1	1	0	1	0	1	1	0	1	0
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	1	1	1	0	0	0	0
1	0	0	1	0	1	0	0	1	0	1
1	0	1	0	1	1	0	0	1	1	0
1	0	1	1	0	1	1	0	0	1	1
1	1	0	0	0	1	1	1	1	0	0
1	1	0	1	1	1	0	1	0	0	1
1	1	1	0	0	1	0	1	0	1	0
1	1	1	1	1	1	1	1	1	1	1

Review: Linear Block Codes

- Given a list of codewords for a code \mathcal{C}, we can determine whether \mathcal{C} is linear by
- Definition: if $\underline{\mathbf{x}}^{(1)}$ and $\underline{\mathbf{x}}^{(2)} \in \mathcal{C}$, then $\underline{\mathbf{x}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)} \in \mathcal{C}$
- Shortcut:
- First check that \mathcal{C} must contain $\underline{\mathbf{0}}$
- Then, check only pairs of the non-zero codewords.
- One check $=$ three checks
- Codewords can be generated by a generator matrix
- $\underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}=\sum_{i=1}^{k} b_{i} \underline{\mathbf{g}}^{(i)}$ where $\underline{\mathbf{g}}^{(i)}$ is the $i^{\text {th }}$ row of \mathbf{G}
- Codebook can be generated by
- working row-wise: generating each codeword one-by-one, or
- working column-wise: first, reading, from \mathbf{G}, how each bit in the codeword is created from the bits in $\underline{\mathbf{b}}$; then, in the codebook, carry out the operations on columns $\underline{\mathbf{b}}$.

Linear Block Codes: Examples

- Repetition code: $\underline{\mathbf{x}}=\left[\begin{array}{llll}b & b & \cdots & b\end{array}\right]$
- $\mathbf{G}=\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right]$

b	$\underline{\mathbf{x}}$		
0	0	0	0
1	1	1	1

$\cdot \underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}=b \mathbf{G}=\left[\begin{array}{llll}b & b & \cdots & b\end{array}\right]$

- $R=\frac{k}{n}=\frac{1}{n}$
- Single-parity-check code: $\underline{\mathbf{x}}=\left[\underline{\underline{\mathbf{b}}} ; \sum^{\sum_{j=1}^{k} b_{j}}\right]$
- $\mathbf{G}=\left[\mathbf{I}_{k \times k} ; \underline{\mathbf{1}}^{T}\right]$
- $R=\frac{k}{n}=\frac{k}{k+1}$
parity bit

\mathbf{b}		$\underline{\mathbf{x}}$		
0	0	0	0	0
0	1	0	1	1
1	0	1	0	1
1	1	1	1	0

Vectors representing 3-bit codewords

Representing the codewords in the two examples on the previous slide as vectors:

Triple-repetition code
$P(\mathcal{E})=1-(1-p)^{3}-3 p(1-p)^{2}$
Single-Parity-check code

$$
P(\mathcal{E})=1-(1-p)^{3}-p(1-p)^{2}
$$

Recall: Achievable Performance

```
BSC with \(p=0.2\)
II
(T)
```


Achievable Performance

BSC with $p=0.2$

Related Idea:

Even Parity vs. Odd Parity

- Parity bit checking is used occasionally for transmitting ASCII characters, which have 7 bits, leaving the 8 th bit as a parity bit.
- Two options:
- Even Parity: Added bit ensures an even number of 1 s in each codeword.
- A: 10000010
- Odd Parity: Added bit ensures an odd number of 1 s in each codeword.
- A: 10000011

Even Parity vs. Odd Parity

- Even parity and odd parity are properties of a codeword (a vector), not a bit.
- Note: The generator matrix $\mathbf{G}=\left[\mathbf{I}_{k \times k} ; \underline{\mathbf{1}}^{T}\right]$ previously considered produces even parity codeword

$$
\underline{\mathbf{x}}=\left[\begin{array}{l}
\underline{\mathbf{b}}
\end{array} \sum_{j=1}^{k} b_{j}\right]
$$

- Q: Consider a code that uses odd parity. Is it linear?

Error Control using Parity Bit

- If an odd number of bits (including the parity bit) are transmitted incorrectly, the parity will be incorrect, thus indicating that a parity error occurred in the transmission.
- Ex.
- Suppose we use even parity.
- Consider the codeword $\underline{\mathbf{x}}=10000010$.
- Suitable for detecting errors; cannot correct any errors

Two types of error control:

1. error detection

Error Detection

2. error correction

- Error detection: the determination of whether errors are present in a received word
- usually by checking whether the received word is one of the valid codewords.

- When a two-way channel exists between source and destination, the receiver can request retransmission of information containing detected errors.
- This error-control strategy is called automatic-repeat-request (ARQ).
- An error pattern is undetectable if and only if it causes the received word to be a valid codeword other than that which was transmitted.
- Ex: In single-parity-check code, error will be undetectable when the number of bits in error is even.

Example: $(3,2)$ Single-parity-check code

- If we receive $001,111,010$, or 100 , we know that something went wrong in the transmission.
- Suppose we transmitted 101 but the error pattern is 110 .
- The received vector is 011
- 011 is still a valid codeword.
- The error is undetectable.

Error Correction

- In FEC (forward error correction) system, when the decoder detects error, the arithmetic or algebraic structure of the code is used to determine which of the valid codewords was transmitted.
- It is possible for a detectable error pattern to cause the decoder to select a codeword other than that which was actually transmitted. The decoder is then said to have committed a decoding error.

Square array for error correction by

 parity checking.- The codeword is formed by arranging k message bits in a square array whose rows and columns are checked by $2 \sqrt{k}$ parity bits.
- A transmission error in one message bit causes a row and column parity failure with the error at the intersection, so single errors can be corrected.

Example: square array

- $k=9$
- $2 \sqrt{9}=6$ parity bits.

$$
\begin{aligned}
\underline{\mathbf{b}} & =\left[b_{1}, b_{2}, \ldots, b_{9}\right] \\
& =101110100 \\
\underline{\mathbf{x}} & =\left[b_{1}, b_{2}, \ldots, b_{9}, p_{1}, p_{2}, \ldots, p_{6}\right]
\end{aligned}
$$

$$
=101110100
$$

Review: Even Parity

- A binary vector (or a collection of 1 s and 0 s) has even parity if and only if the number of 1 s in there is even.
- Suppose we are given the values of all the bits except one bit.
- We can force the vector to have even parity by setting the value of the remaining bit to be the sum of the other bits.

Single-parity-check code
[101110_]

Square array

1	0	1	$=$
0	1	1	$=$
0	0	1	$=-$
-	-	-	

Weight and Distance

- The weight of a vector is the number of nonzero coordinates in the vector.
- The weight of a vector $\underline{\mathbf{x}}$ is commonly written as $\boldsymbol{w}(\underline{\mathbf{x}})$.
- Ex. $w(010111)=$
- For BSC with cross-over probability $p<0.5$, error pattern with smaller weights (less \#1s) are more likely to occur.
- The Hamming distance between two n-bit blocks is the number of coordinates in which the two blocks differ.
- Ex. $d(010111,011011)=$
- Note:
- The Hamming distance between any two vectors equals the weight of their sum.
- The Hamming distance between the transmitted codeword $\underline{\mathbf{x}}$ and the received vector $\underline{\mathbf{y}}$ is the same as the weight of the corresponding error pattern \mathbf{e}.

Probability of Error Patterns

- Recall: We assume that the channel is BSC with crossover probability \boldsymbol{p}.
- For the discrete memoryless channel that we have been considering since Chapter 3,
- the probability that error pattern $\underline{\mathbf{e}}=00101$ is

$$
(1-p)(1-p) p(1-p) p
$$

- Note also that the error pattern is independent from the transmitted vector \underline{X}
- In general, from Section 3.4, the probability the error pattern $\mathbf{\mathbf { e }}$ occurs is

$$
p^{d(\underline{x}, \underline{y})}(1-p)^{n-d(\underline{\mathbf{x}}, \underline{y})}=\left(\frac{p}{1-p}\right)^{d(\underline{\mathbf{x}, \underline{y})}}(1-p)^{n}=\left(\frac{p}{1-p}\right)^{w(\mathbf{e})}(1-p)^{n}
$$

- If we assume $p<0.5$, the error patterns that have larger weights are less likely to occur.
- This also supports the use of minimum distance decoder.

Review: Minimum Distance $\left(d_{\text {min }}\right)$

The minimum distance ($d_{\text {min }}$) of a block code is the minimum Hamming distance between all pairs of distinct codewords.

- Ex. Problem 5 of HW4:

Problem 5. A channel encoder map blocks of two bits to five-bit (channel) codewords. The four possible codewords are $00000,01000,10001$, and 11111. A codeword is transmitted over the BSC with crossover probability $p=0.1$.
(a) What is the minimum (Hamming) distance $d_{\min }$ among the codewords?

$\boldsymbol{d}_{\text {min }}=1$| \boldsymbol{d} | 00000 | 01000 | 10001 | 11111 |
| :---: | :---: | :---: | :---: | :---: |
| | 00000 | | 1 | 2 |
| | 01000 | | | 5 |
| | 10001 | | | |
| | 11111 | | | |

- Ex. Repetition code:

MATLAB: Distance Matrix and $d_{\text {min }}$

```
function D = distAll(C)
```

M = size (C, 1);
$D=\operatorname{zeros}(M, M)$;
for $i=1: M-1$
for $j=(i+1): M$
$D(i, j)=\operatorname{sum}(\bmod (C(i,:)+C(j,:), 2)) ;$
end
end
D = D+D';
function dmin = dmin_block(C)
D = distAll(C);
Dn0 = $D(D>0)$;
dmin $=$ min(Dn0);

```
>> C=[0 0 0 0 0; 0 1 0 0 0; ...
    1 0 0 0 1; 1 1 1 1 1];
>> distAll(C)
ans =
\begin{tabular}{llll}
0 & 1 & 2 & 5 \\
1 & 0 & 3 & 4 \\
2 & 3 & 0 & 3 \\
5 & 4 & 3 & 0
\end{tabular}
>> dmin = dmin_block(C)
dmin =

\section*{\(d_{\text {min }}\) for linear block code}
- For any linear block code, the minimum distance ( \(d_{\text {min }}\) ) can be found from the minimum weight of its nonzero codewords.
- So, instead of checking \(\binom{2^{k}}{2}\) pairs, simply check the weight of the \(2^{k}\) codewords.
```

function dmin = dmin_linear(C)
w = sum(C,2);
w = w([w>0]);
dmin = min(w);

```

\section*{Proof}

Because the code is linear, for any two distinct codewords \(\underline{\mathbf{c}}^{(1)}\) and \(\underline{\mathbf{c}}^{(2)}\), we know that \(\underline{\mathbf{c}}^{(1)} \oplus \underline{\mathbf{c}}^{(2)} \in \mathcal{C}\); that is \(\underline{\mathbf{c}}^{(1)} \oplus \underline{\mathbf{c}}^{(2)}=\underline{\mathbf{c}}\) for some nonzero \(\underline{\mathbf{c}} \in \mathcal{C}\). Therefore,
\[
d\left(\underline{\mathbf{c}}^{(1)}, \underline{\mathbf{c}}^{(2)}\right)=w\left(\underline{\mathbf{c}}^{(1)} \oplus \underline{\mathbf{c}}^{(2)}\right)=w(\underline{\mathbf{c}}) \text { for some nonzero } \underline{\mathbf{c}} \in \mathcal{C}
\]

This implies
\[
\min _{\substack{\underline{\mathbf{c}}^{(1)}, \mathbf{c}^{(2)} \in \mathcal{C} \\ \underline{\mathbf{c}}^{(1)} \neq \underline{\mathbf{c}}^{2)}}} d\left(\underline{\mathbf{c}}^{(1)}, \underline{\mathbf{c}}^{(2)}\right) \geq \min _{\substack{\mathbf{c} \in \mathcal{C} . \\ \underline{\mathbf{c}} \neq \mathbf{0}}} w(\underline{\mathbf{c}}) .
\]

Note that inequality is used here because we did not show that \(\underline{\mathbf{c}}^{(1)} \oplus \underline{\mathbf{c}}^{(2)}\) can produce all possible nonzero \(\mathbf{c} \in \mathcal{C}\).

Next, for any nonzero \(\mathbf{c} \in \mathcal{C}\), note that
\[
d(\underline{\mathbf{c}}, \underline{\mathbf{0}})=w(\underline{\mathbf{c}} \oplus \underline{\mathbf{0}})=w(\underline{\mathbf{c}}) .
\]
\[
\min _{\substack{\underline{\mathbf{c}}^{(1)}, \mathbf{c}^{(2)} \in \mathcal{C} \\ \underline{\mathbf{c}}^{(1)} \neq \underline{\mathbf{c}}^{(2)}}} d\left(\underline{\mathbf{c}}^{(1)}, \underline{\mathbf{c}}^{(2)}\right) \stackrel{\downarrow}{=} \min _{\underset{\mathbf{c} \in \mathcal{C}}{ }} w(\underline{\mathbf{c}})
\]

Note that \(\underline{\mathbf{c}, \underline{\mathbf{0}}}\) is just one possible pair of two distinct codewords. This implies
\[
\min _{\substack{\mathbf{c}^{(1)}, \mathbf{c}^{(2)} \in \mathcal{C} \\ \underline{\mathbf{c}}^{(1)} \neq \underline{\mathbf{c}}^{(2)}}} d\left(\underline{\mathbf{c}}^{(1)}, \underline{\mathbf{c}}^{(2)}\right) \leq \min _{\substack{\underline{\mathbf{c}} \in \mathcal{C} . \\ \underline{\mathbf{c}} \neq \underline{\mathbf{0}}}} w(\underline{\mathbf{c}}) .
\]

\section*{Example}
\[
\begin{aligned}
& \mathbf{G}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right] \\
& \underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}=\left[\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{llll}
b_{2} & b_{1} & b_{1} & b_{1} \oplus b_{2}
\end{array}\right]
\end{aligned}
\]

\section*{Example}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{7}{*}{\(\mathbf{G}=\left(\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0\end{array}\right)\)} & \(\underline{\text { b }}\) & \(\underline{x}\) & \(w(\underline{x})\) \\
\hline & 0 0 0 & \(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}\) & 0 \\
\hline & \(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0\end{array}\) & \(\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1\end{array}\) & \\
\hline & \(\begin{array}{lll}0 & 1 & 1\end{array}\) & \(\begin{array}{lllllll}0 & 1 & 1 & 1 & 0 & 1\end{array}\) & \\
\hline & \(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1\end{array}\) & \(\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1\end{array}\) & 4 \\
\hline & 110 & \(\begin{array}{llllll}1 & 1 & 0 & 1 & 1 & 0\end{array}\) & 4 \\
\hline & \(1 \begin{array}{lll}1 & 1\end{array}\) & \(\begin{array}{llllll}1 & 1 & 1 & 0 & 0 & 0\end{array}\) & 3 \\
\hline
\end{tabular}
\(\gg G=[100101 ; 010011 ; 0011110] ;\)
\(\gg\) [B C] = blockCodebook(G);
>> dmin = dmin_block(C)
dmin =
3
>> dmin = dmin_linear (C)
dmin =

\section*{Example}
\(\mathbf{G}=\left[\begin{array}{lllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right]\)
```

>>G = [lllllllllllllllllll}
0 0 1 0 1 1 0; 1 0 1 0 1 0 1];
>> [BC] = blockCodebook(G);
>> dmin = dmin_linear(C)
dmin =
>> dmin = dmin_block(C)
dmin =

```
\begin{tabular}{|cccc|ccccccc|c|}
\hline \multicolumn{4}{|c|}{\(\underline{\mathbf{b}}\)} & \multicolumn{7}{|c|}{\(\underline{\mathbf{x}}\)} & \\
& & & & \(w(\underline{\mathbf{x}})\) \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 4 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 3 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 3 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 3 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 3 \\
0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 4 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 4 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 3 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 3 \\
1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 4 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 4 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 4 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 4 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 3 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 7 \\
\hline
\end{tabular}

\section*{Visual Interpretation of \(d_{\text {min }}\)}



\section*{Visual Interpretation of \(d_{\text {min }}\)}
- Consider all the (valid) codewords (in the codebook).
- We can find the distances between them.
- We can then find \(d_{\text {min }}\).


\section*{Visual Interpretation of \(d_{\text {min }}\)}
- When we draw a circle (sphere, hypersphere) of radius \(d_{\text {min }}\) around any codeword, we know that there can not be another codeword inside this circle.
- The closest codeword is at least \(d_{\text {min }}\) away.

\(\underline{c}^{(6)}\)


\section*{\(d_{\text {min }}\) and Error Detection}
- Suppose codeword \(\underline{\mathbf{c}}^{(5)}\) is chosen to be transmitted; that is
\[
\underline{x}=\underline{\mathbf{c}}^{(5)} .
\]
- The received vector \(\underline{y}\) can be calculated from

\[
\underline{y}=\underline{x} \oplus \underline{e} .
\]

\section*{\(d_{\text {min }}\) and Error Detection}
- When \(d_{\text {min }}>w\), there is no way that \(w\) errors can change a valid codeword into another valid codeword.


\section*{\(d_{\text {min }}\) and Error Detection}
- For some codewords, when \(d_{\text {min }}=w\), it is possible that \(w\) errors can change a valid codeword into another valid codeword.

\(\underline{c}^{(6)}\)


\section*{\(d_{\text {min }}\) and Error Detection}
- To be able to detect all \(w\)-bit errors, we need \(d_{\text {min }} \geq w+1\).
- With such a code there is no way that \(w\) errors can change a valid codeword into another valid codeword.
- When the receiver observes an illegal codeword, it can tell that a transmission error has occurred.


When \(d_{\text {min }}>w\), there is no way that \(w\) errors can change a valid codeword into another valid codeword.

When \(d_{\text {min }} \leq w\), it is possible that \(w\) errors can change a valid codeword into another valid codeword.

\section*{\(d_{\text {min }}\) is an important quantity}
- To be able to correct all \(w\)-bit errors, we need \(d_{\min } \geq 2 w+1\).
- This way, the legal codewords are so far apart that even with \(w\) changes, the original codeword is still closer than any other codeword.


\section*{\(d_{\text {min }}\) : two important facts}
- For any linear block code, the minimum distance ( \(d_{\text {min }}\) ) can be found from the minimum weight of its nonzero codewords.
- So, instead of checking \(\binom{2^{k}}{2}\) pairs, simply check the weight of the \(2^{k}\) codewords.
- A code with minimum distance \(d_{\text {min }}\) can
- detect all error patterns of weight \(\mathrm{w} \leq d_{\min }-1\).
- correct all error patterns of weight \(\mathrm{w} \leq\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor\).

\section*{Example}

Repetition code with \(n=5\)
- We have seen that it has \(d_{\text {min }}=5\).
- It can detect (at most) ___ errors.
- It can correct (at most) ___ errors.

\section*{Example}

Consider the code
\(\mathcal{C} \in\{0000000000,0000011111,1111100000\), and 1111111111\(\}\)
- Is it a linear code?
- \(d_{\text {min }}=\)
\begin{tabular}{|l|l|l|l|l|}
\hline\(\bigoplus^{(3)}\) & \(\underline{\mathbf{c}}^{(1)}\) & \(\underline{\mathbf{c}}^{(2)}\) & \(\underline{\mathbf{c}}^{(3)}\) & \(\underline{\mathbf{c}}^{(4)}\) \\
\hline \(0000000000 \underline{\mathbf{c}}^{(1)}\) & & & & \\
\hline \(0000011111 \underline{\mathbf{c}}^{(2)}\) & & & & \\
\hline \(1111100000 \underline{\mathbf{c}}^{(3)}\) & & & & \\
\hline \(1111111111 \underline{\mathbf{c}}^{(4)}\) & & & &
\end{tabular}
- It can detect (at most) \(\qquad\) errors.
- It can correct (at most) \(\qquad\) errors.```

