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Review: Channel Encoder and Decoder
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System Model for Chapter 5
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Vector Notation
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 : column vector

 : row vector
 Subscripts represent element indices inside individual 

vectors.
 and refer to the ith elements inside the vectors and , 

respectively.

 When we have a list of vectors, we use superscripts in 
parentheses as indices of vectors. 

  is a list of M column vectors
 is a list of M row vectors

 and refer to the ith vectors in the corresponding lists.

𝑣
𝑣
⋮

𝑣
⋮

𝑣
𝑟 , 𝑟 , … , 𝑟 , … 𝑟

0, 0: the zero vector
(the all-zero vector)

1, 1: the one vector
(the all-one vector)



Channel Decoding
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 Recall

1. MAP decoder is the optimal decoder. 
2. When the codewords are equally-likely, the ML decoder the same as the MAP decoder; hence it is also 

optimal.
3. When the crossover probability of the BSC p is < 0.5, 

ML decoder is the same as the minimum distance decoder. 

 In this chapter, we assume the use of minimum distance 
decoder.

 𝐱 𝐲 arg min 
𝐱

𝑑 𝐱, 𝐲

 Also, in this chapter, we will focus 
 less on probabilistic analysis,
 but more on explicit codes.

MAP decoder 
is optimal

ML decoder is 
optimal

Codewords 
are equally 
likely

Min distance 
decoder is optimal

BSC with 
𝑝 0.5
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Review: Block Encoding
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 We mentioned the general form of channel coding over BSC.

 In particular, we looked at the general form of block 
codes.

 (n,k) codes: n-bit blocks are used to conveys k-info-bit blocks
 Assume n > k

 Rate: .

Block Encoder

k bits k bits k bits n bits n bits n bits

Recall that the capacity of BSC is 𝐶 1 𝐻 𝑝 .
For  𝑝 ∈ 0,1 , we also have  𝐶 ∈ 0,1 . 
Achievable rate is < 1.

Max. achievable rate

Code length
“Dimension” of the code

codewords “messages”



System Model for Section 5.1
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  = the collection of all codewords for the code considered.
 Each n-bit block is selected from .
 The message (data block) has k bits, so there are 2k possibilities.
 A reasonable code would not assign 

the same codeword to different messages.
 Therefore, there are 2k (distinct) codewords in .

 Ex. Repetition code with n = 3

𝒔 𝐬
𝐬

𝐬

𝐱

𝐱

𝐱

𝐱

𝑀 2 possibilities

Choose 𝑀 2 from 
2 possibilities to be 
used as codewords.



GF(2)
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 The construction of the codes can be expressed in matrix form 
using the following definition of addition and multiplication
of bits:

 These are  modulo-2 addition and modulo-2 multiplication, 
respectively. 

 The operations are the same as the exclusive-or (XOR) 
operation and the AND operation.
 We will simply call them addition and multiplication so that we can 

use a matrix formalism to define the code.
 The two-element set {0, 1} together with this definition of 

addition and multiplication is a number system called a finite 
field or a Galois field, and is denoted by the label GF(2).

0 1 0 1
0 0 1 0 0 0
1 1 0 1 0 1

 

Galois theory



Modulo operation
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 The modulo operation finds the remainder after division of 
one number by another (sometimes called modulus).

 Given two positive numbers, (the dividend) and (the 
divisor), 

 (abbreviated as ) is the remainder of the 
division of by . 

 “ ” 

 “ ” 
 In MATLAB,  mod(5,2) = 1.

 Congruence relation
 5 ≡ 1  mod 2

6

23

836

18
5

13
divisor

quotient
dividend

remainder
2 5
4
1

2
divisor

quotient

dividend

remainder



GF(2) and modulo operation
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 Normal addition and multiplication (for 0 and 1):

 Addition and multiplication in GF(2):

0 1 0 1
0 0 1 0 0 0
1 1 2 1 0 1

 

0 1 0 1
0 0 1 0 0 0
1 1 0 1 0 1

 



GF(2)
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 The construction of the codes can be expressed in matrix form 
using the following definition of addition and multiplication of 
bits:

 Note that

1
0

0

x

x x
x

x x

x

x




 








The property above implies

By definition, “ 𝑥” is something that, when added with 𝑥, gives 0.

 Extension: For vector and matrix, apply the operations to the elements 
the same way that addition and multiplication would normally apply 
(except that the calculations are all in GF(2)).

0 1 0 1
0 0 1 0 0 0
1 1 0 1 0 1

 

0 ⊕ 0 0
1 ⊕ 0 1
0 ⊕ 1 1
1 ⊕ 1 0
0 ⊕ 0 0
1 ⊕ 1 0



Examples
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 Normal vector addition:

 Vector addition in GF(2):

1 1 2 1
2 3 0 1

1 2 2 2

1 0 1 1
0 1 0 1

1 1 1 0

Alternatively, one can also apply 
normal vector addition first, then 
apply “mod 2” to each element:

⊕
1 0 1 1
0 1 0 1

1 1 1 2

1 1 1 0

mod 2



Examples
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 Normal matrix multiplication:

 Matrix multiplication in GF(2):

7 4 3
2 5 6
1 8 9

2 4
3 8
7 6

23 14
31 4
41 6

7 2 4 3 + 3 7 14 12 21

1 0 1
0 0 1
1 1 1

1 1
0 1
1 0

0 1
1 0
0 0

1 · 1  0 · 0  1 · 1 101 Alternatively, one can also apply normal 
matrix multiplication first, then apply 
“mod 2” to each element:

1 0 1
0 0 1
1 1 1

1 1
0 1
1 0

2 1
1 0
2 2

 0 1
1 0
0 0



BSC and the Error Pattern
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 For one use of the channel,

 Again, to transmit k information bits, the channel is used n
times. 

BSCx y

Encoderb x BSC y

 y x e

error pattern

1 k 1 n

Its nonzero elements mark the 
positions of transmission error in y



Additional Properties in GF(2)
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 The following statements are equivalent
1. 
2. 
3. 

 The following statements are equivalent
1. 
2. 
3. 

 In particular, because  , if we are given two 
quantities, we can find the third quantity by summing the 
other two.

Having one of these is the same 
as having all three of them.

Having one of these is the same 
as having all three of them.



Linear Block Codes
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 Definition:  is a (binary) linear (block) code if and 
only if  forms a vector (sub)space (over GF(2)). 
 Equivalently, this is the same as requiring that

 Note that any (non-empty) linear code  must contain 0.

 Ex. The code that we considered in Problem 5 of HW4 is

Is it a linear code?

In case you forgot about the concept of vector space,…

f  and   then  

 00000,01000,10001,11111



Ex. Checking Linearity
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  00000,01000,10001,11111

 Step 1: Check that .
 OK for this example.

 Step 2: Check that 
if 𝐱  and 𝐱 ∈ ,  then 𝐱 𝐱 ∈ .

 00000 01000 10001 11111

00000

01000

10001

11111



Ex. Checking Linearity
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 We have checked that
 00000,01000,10001,11111
is not linear.

 Change one codeword in  to make the code linear.

 00000

00000



Linear Block Codes: Motivation (1)
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 Why linear block codes are popular?

 Recall: General block encoding
 Characterized by its codebook.

 Can be realized by combinational/combinatorial circuit.
 If lucky, can used K-map to simplify the circuit.

𝒔 𝐬
𝐬

𝐬

𝐱

𝐱

𝐱

𝐱

𝑀 2 possibilities

Choose 𝑀 2 from 
2 possibilities to be 
used as codewords.
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Linear Block Codes: Motivation (2)

40

 Why linear block codes are popular?

 Linear block encoding is the same as matrix multiplication.
 See next slide.
 The matrix replaces the table for the codebook.

 The size of the matrix is only bits.
 Compare this against the table (codebook) of size 2 𝑘 𝑛 bits for 

general block encoding.

 Linearity  easier implementation and analysis

 Performance of the class of linear block codes is similar to 
performance of the general class of block codes.
 Can limit our study to the subclass of linear block codes 

without sacrificing system performance.



Example
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  00000,01000,10001,11001

 Let

 Find bG when b = [0 0].

 Find bG when b = [0 1].

 Find bG when b = [1 0].

 Find bG when b = [1 1].

1
0 0
0

0 1 0
00 1

 
  
 

G

All possible two-bit vectors



Block Matrices
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 A block matrix or a partitioned matrix is a matrix that 
is interpreted as having been broken into sections called 
blocks or submatrices.

 Examples:

10 6 6 4 3
9 7 3 5 9                          

2 2 5 10 2 10 2 5
3 3 4 5 10 5 3 6
3 3 4 1 1 5 5 6
7 2 5 3 10 6 10 3
8 3 6 9 8 3 6 5

A B
C D

E F



Ex: Block Matrix Multiplications
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10 6 6 4 3
9 7 3 5 9

2 2 5 10 2 10 2 5
3 3 4 5 10 5 3 6
3 3 4 1 1 5 5 6
7 2 5 3 10 6 10 3
8 3 6 9 8 3 6 5

108 73 136 175 150 193 126 149
155 85 164 224 213 197 158 165

A B
C D

E F

AC+BE AD+BF

10 6 6 4 3
9 7 3 5 9

2 2 5 10 2 10 2 5
3 3 4 5 10 5 3 6
3 3 4 1 1 5 5 6
7 2 5 3 10 6 10 3
8 3 6 9 8 3 6 5

108 73 136 175 150 193 126 149
155 85 164 224 213 197 158 165

X G H

XG XH



From to 
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 Any codeword is simply a linear combination of the rows 
of G.
 The weights are given by the bits in the message 



Linear Combination in GF(2)
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 A linear combination is an expression constructed from a 
set of terms by multiplying each term by a constant (weight) 
and adding the results.

 For example, a linear combination of x and y would be any 
expression of the form ax + by, where a and b are constants.

 General expression: 

 In GF(2), is limited to being 0 or 1. So, a linear 
combination is simply a sum of a sub-collection of the 
vectors.



Linear Block Codes: Generator Matrix
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For any linear code, there is a matrix

called the generator matrix
such that, for any codeword , there is a message vector 
which produces by

=  

𝐠

𝐠
⋮

𝐠

 

mod-2 summation

Note: 
(1) Any codeword can be expressed as a linear combination of the 

rows of G
(2)

Note also that, given a matrix 𝐆, the (block) 
code that is constructed by (2) is always linear.
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Fact: If a code is generated by plugging in every possible b  into  x bG , then the code will automatically 
be linear. 

Proof 

If G  has  k  rows. Then, b  will have  k  bits. We can list them all as       1 2 2, , ,
k

b b b . The corresponding codewords 
are 

   i ix b G  for  1,2, , 2ki   . 

Let’s take two codewords, say,   1ix  and   2ix . By construction,     1 1i ix b G  and     2 2i ix b G . Now, consider the 
sum of these two codewords: 

            1 2 1 2 1 2i i i i i i    x x b G b G b b G   

Note that because we plug in every possible b  to create this code, we know that     1 2i ib b  should be one of these 

b . Let’s suppose       1 2 3i i i b b b  for some   3ib . This means  

     1 2 3i i i x x b G . 

But, again, by construction,   3ib G  gives a codeword   3ix  in this code. Because the sum of any two codewords is 
still a codeword, we conclude that the code is linear.  



Linear Block Code: Example
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 Find the codeword for the message b = [1 0 0]

 Find the codeword for the message b = [0 1 1]

 How many codewords do this code have?

1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 0

 
   
 
 

G



Linear Block Code: Codebook
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𝐱 𝐛𝐆 𝑏  𝑏  𝑏
1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 0

𝑏 , 𝑏 , 𝑏 , 𝑏 ⊕ 𝑏 , 𝑏 ⊕ 𝑏 , 𝑏 ⊕ 𝑏

𝐛 𝐱

0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 1 0
0 1 0 0 1 0 0 1 1
0 1 1 0 1 1 1 0 1
1 0 0 1 0 0 1 0 1
1 0 1 1 0 1 0 1 1
1 1 0 1 1 0 1 1 0
1 1 1 1 1 1 0 0 0

1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 0

 
   
 
 

G



MATLAB: Codebook
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𝐛 𝐱

0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 1 0
0 1 0 0 1 0 0 1 1
0 1 1 0 1 1 1 0 1
1 0 0 1 0 0 1 0 1
1 0 1 1 0 1 0 1 1
1 1 0 1 1 0 1 1 0
1 1 1 1 1 1 0 0 0

function [B C] = blockCodebook(G)
[k n] = size(G);
% All data words
B = dec2bin(0:2^k-1)-'0';
% All codewords
C = mod(B*G,2);
end

G = [1 0 0 1 0 1; 0 1 0 0 1 1; 0 0 1 1 1 0];
[B C] = blockCodebook(G)

1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 0

 
   
 
 

G



Linear Block Code: Example
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 Find the codeword for the message b = [1 0 0 0]

 Find the codeword for the message b = [0 1 1 0]

 How many codewords do this code have?

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 0 1 0 1 1 0
1 0 1 0 1 0 1

 
 
 
 
 
 

G



MATLAB: Codebook
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function [B C] = blockCodebook(G)
[k n] = size(G);
% All data words
B = dec2bin(0:2^k-1)-'0';
% All codewords
C = mod(B*G,2);
end

G = [1 1 1 0 0 0 0; 1 0 0 1 1 0 0; 0 0 1 0 1 1 0; 1 0 1 0 1 0 1];
[B C] = blockCodebook(G)

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 0 1 0 1 1 0
1 0 1 0 1 0 1

 
 
 
 
 
 

G

𝐛 𝐱
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 1 0 1
0 0 1 0 0 0 1 0 1 1 0
0 0 1 1 1 0 0 0 0 1 1
0 1 0 0 1 0 0 1 1 0 0
0 1 0 1 0 0 1 1 0 0 1
0 1 1 0 1 0 1 1 0 1 0
0 1 1 1 0 0 0 1 1 1 1
1 0 0 0 1 1 1 0 0 0 0
1 0 0 1 0 1 0 0 1 0 1
1 0 1 0 1 1 0 0 1 1 0
1 0 1 1 0 1 1 0 0 1 1
1 1 0 0 0 1 1 1 1 0 0
1 1 0 1 1 1 0 1 0 0 1
1 1 1 0 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1



Review: Linear Block Codes
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 Given a list of codewords for a code , we can determine whether 
 is linear by
 Definition: if 𝐱  and 𝐱 ∈ ,  then 𝐱 𝐱 ∈ 
 Shortcut:
 First check that  must contain 0.
 Then, check only pairs of the non-zero codewords.

 One check = three checks

 Codewords can be generated by a generator matrix

 𝐱 𝐛𝐆 𝑏 𝐠 where 𝐠 is the ith row of 𝐆

 Codebook can be generated by
 working row-wise: generating each codeword one-by-one, or
 working column-wise: first, reading, from 𝐆, how each bit in the 

codeword is created from the bits in 𝐛; then, in the codebook, carry 
out the operations on columns 𝐛.



Linear Block Codes: Examples
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 Repetition code: 






 Single-parity-check code: 





parity bit

𝑏 𝐱
0 0 0 0
1 1 1 1

𝐛 𝐱
0 0 0 0 0
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0



Vectors representing 3-bit codewords
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Triple-repetition code Single-Parity-check code

Representing the codewords in the two examples on the previous slide as vectors:

     3 21 1 1P p p p         3 21 1 3 1P p p p    



P(
E)

Recall: Achievable Performance

58

BSC with 

repetition code with 𝑛 5 in Exercise 9
0.0579

0.1040

0.2000

Optimal codes that we 
found in Exercise 9

Example given in Exercise 9

0.2832 

0.2218 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Rate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Achievable Performance
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BSC with 

𝐶 1 𝐻 𝑝 0.2781

Triple-repetition code 
is optimal among all codes 
with 𝑛 3, 𝑘 1.

Single-Parity-check code
𝑘 2

is optimal among all codes 
with 𝑛 3, 𝑘 2.



Even Parity vs. Odd Parity
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 Parity bit checking is used occasionally for transmitting ASCII 
characters, which have 7 bits, leaving the 8th bit as a parity 
bit.

 Two options:
 Even Parity: Added bit ensures an even number of 1s in each 

codeword.
 A: 10000010

 Odd Parity: Added bit ensures an odd number of 1s in each 
codeword.
 A: 10000011

Related Idea:



Even Parity vs. Odd Parity
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 Even parity and odd parity are properties of a codeword (a 
vector), not a bit.

 Note: The generator matrix 𝐆 𝐈 ; 𝟏 previously 
considered produces even parity codeword

𝐱 𝐛 ; 𝑏

 Q: Consider a code that uses odd parity. Is it linear?



Error Control using Parity Bit
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 If an odd number of bits (including the parity bit) are 
transmitted incorrectly, the parity will be incorrect, thus 
indicating that a parity error occurred in the transmission. 

 Ex. 
 Suppose we use even parity. 

 Consider the codeword 10000010

 Suitable for detecting errors; cannot correct any errors



Error Detection
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 Error detection: the determination of whether errors are present in a 
received word
 usually by checking whether 

the received word is one of the 
valid codewords.

 When a two-way channel exists between source and destination, the 
receiver can request retransmission of information containing 
detected errors. 
 This error-control strategy is called automatic-repeat-request (ARQ).

 An error pattern is undetectable if and only if it causes the received 
word to be a valid codeword other than that which was transmitted.
 Ex: In single-parity-check code, error will be undetectable when the number 

of bits in error is even.

Two types of error control:

1. error detection

2. error correction

𝒔 𝐬
𝐬

𝐬

𝐱

𝐱

𝐱

𝐱

𝑀 2 possibilities

Choose 𝑀 2 from 
2 possibilities to be 
used as codewords.



Example: (3,2) Single-parity-check code
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 If we receive 001, 111, 010, 
or 100, we know that 
something went wrong in 
the transmission.

 Suppose we transmitted 101 
but the error pattern is 110. 
 The received vector is 011
 011 is still a valid 

codeword. 
 The error is undetectable.



Error Correction
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 In FEC (forward error correction) system, when the 
decoder detects error, the arithmetic or algebraic structure
of the code is used to determine which of the valid 
codewords was transmitted.

 It is possible for a detectable error pattern to cause the 
decoder to select a codeword other than that which was 
actually transmitted. The decoder is then said to have 
committed a decoding error.



Square array for error correction by 
parity checking.
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 The codeword is formed by 
arranging k message bits in 
a square array 
whose rows and columns 
are checked by parity 
bits.

 A transmission error in one 
message bit causes a row 
and column parity failure 
with the error at the 
intersection, so single 
errors can be corrected.

[Carlson & Crilly, p 594]



 



Example: square array 

68



 parity bits.

[Carlson & Crilly, p 594]

_ _ _ _ _ _



 



Review: Even Parity
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 A binary vector (or a collection of 1s and 0s) has even 
parity if and only if the number of 1s in there is even.
 Suppose we are given the values of all the bits except one bit.
 We can force the vector to have even parity by setting the value of the 

remaining bit to be the sum of the other bits.

[1 0 1 1 0 _]
Square array Single-parity-check code



Weight and Distance
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 The weight of a vector is the number of nonzero coordinates in 
the vector.
 The weight of a vector 𝐱 is commonly written as 𝒘 𝐱 .
 Ex. 𝑤 010111

 For BSC with cross-over probability 𝑝 0.5, error pattern with 
smaller weights (less #1s) are more likely to occur.

 The Hamming distance between two n-bit blocks is the 
number of coordinates in which the two blocks differ.
 Ex. 𝑑 010111,011011

 Note: 
 The Hamming distance between any two vectors equals the weight of their 

sum.
 The Hamming distance between the transmitted codeword 𝐱 and the 

received vector 𝐲 is the same as the weight of the corresponding error 
pattern 𝐞.



Probability of Error Patterns
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 Recall: We assume that the channel is BSC with crossover probability 𝒑.
 For the discrete memoryless channel that we have been considering 

since Chapter 3,
 the probability that error pattern 𝐞 00101 is

1 𝑝 1 𝑝 𝑝 1 𝑝 𝑝.
 Note also that the error pattern is independent from the transmitted vector 

𝐱
 In general, from Section 3.4, 

the probability the error pattern 𝐞 occurs is 

𝑝 𝐱,𝐲 1 𝑝 𝐱,𝐲 𝑝
1 𝑝

𝐱,𝐲

1 𝑝
𝑝

1 𝑝

𝐞

1 𝑝

 If we assume 𝒑 𝟎. 𝟓, 
the error patterns that have larger weights are less likely to occur.
 This also supports the use of minimum distance decoder.



Review: Minimum Distance (dmin)
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The minimum distance (dmin) of a block code is the 
minimum Hamming distance between all pairs of distinct
codewords.

 Ex. Problem 5 of HW4:

 Ex. Repetition code: 

𝒅 00000 01000 10001 11111

00000 1 2 5

01000 3 4

10001 3

11111

𝒅𝐦𝐢𝐧 𝟏



MATLAB: Distance Matrix and dmin
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function D = distAll(C)

M = size(C,1);
D = zeros(M,M);
for i = 1:M-1

for j = (i+1):M
D(i,j) = sum(mod(C(i,:)+C(j,:),2));

end
end
D = D+D';

>> C=[0 0 0 0 0; 0 1 0 0 0; ...
1 0 0 0 1; 1 1 1 1 1];

>> distAll(C)
ans =

0     1 2     5
1     0     3     4
2     3     0     3
5     4     3     0

>> dmin = dmin_block(C)
dmin =

1

function dmin = dmin_block(C)
D = distAll(C);
Dn0 = D(D>0);
dmin = min(Dn0);

This can be used to find 𝑑 for all block codes. 
There is no assumption about linearity of the 
code. Soon, we will see that we can simplify the 
calculation when the code is known to be linear.



dmin for linear block code
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 For any linear block code, the minimum distance (dmin) 
can be found from the minimum weight of its nonzero
codewords.

 So, instead of checking 2
2

pairs, 

simply check the weight of the 2 codewords.

function dmin =  dmin_linear(C)
w = sum(C,2);
w = w([w>0]);
dmin = min(w);



Proof
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Because the code is linear, for any two distinct codewords  𝐜 1  and 𝐜 2 , we know that 𝐜 1 ⊕ 𝐜 2 ∈ ; 
that is 𝐜 1 ⊕ 𝐜 2 𝐜 for some nonzero 𝐜 ∈ . Therefore,  

𝑑 𝐜 1 , 𝐜 2 𝑤 𝐜 1 ⊕ 𝐜 2 𝑤 𝐜  for some nonzero 𝐜 ∈ . 

This implies  

min
𝐜 1 ,𝐜 2 ∈
𝐜 1 𝐜 2

𝑑 𝐜 1 , 𝐜 2 min
𝐜∈.
𝐜 𝟎

𝑤 𝐜 . 

Note that inequality is used here because we did not show that 𝐜 1 ⊕ 𝐜 2  can produce all possible 
nonzero 𝐜 ∈ . 

Next, for any nonzero 𝐜 ∈ , note that  

𝑑 𝐜, 𝟎 𝑤 𝐜 ⊕ 𝟎 𝑤 𝐜 . 

Note that 𝐜, 𝟎 is just one possible pair of two distinct codewords. This implies 

min
𝐜 1 ,𝐜 2 ∈
𝐜 1 𝐜 2

𝑑 𝐜 1 , 𝐜 2 min
𝐜∈.
𝐜 𝟎

𝑤 𝐜 . 

min
𝐜 1 ,𝐜 2 ∈
𝐜 1 𝐜 2

𝑑 𝐜 1 , 𝐜 2 min
𝐜∈.
𝐜 𝟎

𝑤 𝐜  



Example

76
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𝐛 𝐱

1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 0

 
   
 
 

G

>> G = [1 0 0 1 0 1; 0 1 0 0 1 1; 0 0 1 1 1 0];
>> [B C] = blockCodebook(G);
>> dmin =  dmin_block(C)
dmin =

3
>> dmin =  dmin_linear(C)
dmin =

3

0 0 0 0 0 0 0 0 0  0
0 0 1 0 0 1 1 1 0  3
0 1 0 0 1 0 0 1 1  3
0 1 1 0 1 1 1 0 1  4
1 0 0 1 0 0 1 0 1  3
1 0 1 1 0 1 0 1 1  4
1 1 0 1 1 0 1 1 0  4
1 1 1 1 1 1 0 0 0  3

𝑤 𝐱
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1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 0 1 0 1 1 0
1 0 1 0 1 0 1

 
 
 
 
 
 

G

𝐛 𝐱

>> G = [1 1 1 0 0 0 0; 1 0 0 1 1 0 0;...
0 0 1 0 1 1 0; 1 0 1 0 1 0 1];

>> [B C] = blockCodebook(G);
>> dmin =  dmin_linear(C)
dmin =

3
>> dmin =  dmin_block(C)
dmin =

3

0 0 0 0 0 0 0 0 0 0 0  0
0 0 0 1 1 0 1 0 1 0 1  4
0 0 1 0 0 0 1 0 1 1 0  3
0 0 1 1 1 0 0 0 0 1 1  3
0 1 0 0 1 0 0 1 1 0 0  3
0 1 0 1 0 0 1 1 0 0 1  3
0 1 1 0 1 0 1 1 0 1 0  4
0 1 1 1 0 0 0 1 1 1 1  4
1 0 0 0 1 1 1 0 0 0 0  3
1 0 0 1 0 1 0 0 1 0 1  3
1 0 1 0 1 1 0 0 1 1 0  4
1 0 1 1 0 1 1 0 0 1 1  4
1 1 0 0 0 1 1 1 1 0 0  4
1 1 0 1 1 1 0 1 0 0 1  4
1 1 1 0 0 1 0 1 0 1 0  3
1 1 1 1 1 1 1 1 1 1 1  7

𝑤 𝐱
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𝐜𝐜

𝐜

𝐜

𝐜

𝐜

𝐜

𝐜

Recall: Codebook construction
Choose 𝑀 2 from 2
possibilities to be used as 
codewords.  
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 Consider all the (valid) codewords (in the codebook).

 We can find the distances between them.

 We can then find min.

dmin
𝐜𝐜

𝐜

𝐜

𝐜

𝐜

𝐜

𝐜



Visual Interpretation of dmin

85

 When we draw a circle (sphere, hypersphere) of radius 
around any codeword, we know that there can not be another 
codeword inside this circle.

 The closest codeword is at least away.

dmin
𝐜𝐜

𝐜

𝐜

𝐜

𝐜

𝐜

𝐜



dmin and Error Detection
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 Suppose codeword is chosen to be transmitted; that is

 The received vector can be calculated from 

.

𝐜𝐜

𝐜

𝐜

𝒚 𝒙 ⊕ 𝒆

𝒆

𝒙 𝐜

𝐜

𝐜

𝐜
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 When , there is no way that errors can change 
a valid codeword into another valid codeword.

𝐜𝐜

𝐜

𝐜

𝒙

𝒆
𝐜

𝐜

𝐜
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 For some codewords,
when , it is possible that errors can change a 
valid codeword into another valid codeword.

𝐜𝐜

𝐜

𝒙 𝐜

𝒆
𝐜

𝐜

𝐜

𝐜
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 To be able to detect all w-bit errors, we need 𝑑 𝑤 1.
 With such a code there is no way that w errors can change a 

valid codeword into another valid codeword. 
 When the receiver observes an illegal codeword, it can tell that 

a transmission error has occurred. 

𝐜𝐜

𝐜

𝐜

𝒙

𝒆

When 𝑑 𝑤 , there is no way 
that 𝑤 errors can change a valid 
codeword into another valid 
codeword.

When 𝑑 𝑤 , it is possible 
that 𝑤 errors can change a valid 
codeword into another valid 
codeword.



dmin is an important quantity
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 To be able to correct all w-bit errors, we need 𝑑 2𝑤 1.
 This way, the legal codewords are so far apart that even with w

changes, the original codeword is still closer than any other 
codeword.

dmin

2

𝐜𝐜

𝐜

𝒙 𝐜

𝐜



dmin: two important facts
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 For any linear block code, the minimum distance (dmin) 
can be found from the minimum weight of its nonzero
codewords.

 So, instead of checking 2
2

pairs, 

simply check the weight of the 2 codewords.

 A code with minimum distance dmin can
 detect all error patterns of weight w ≤ dmin-1.

 correct all error patterns of weight w ≤ .

the floor function
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Repetition code with 

 We have seen that it has .

 It can detect (at most) ___ errors.

 It can correct (at most) ___ errors.
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Consider the code

 Is it a linear code?

 dmin = 

 It can detect (at most) ___ errors.

 It can correct (at most) ___ errors.

 0000000000, 0000011111, 1111100000, and 1111111111

⊕     𝐜    𝐜    𝐜   𝐜
𝐜
𝐜

𝐜

𝐜

0000000000

0000011111

1111100000

1111111111


