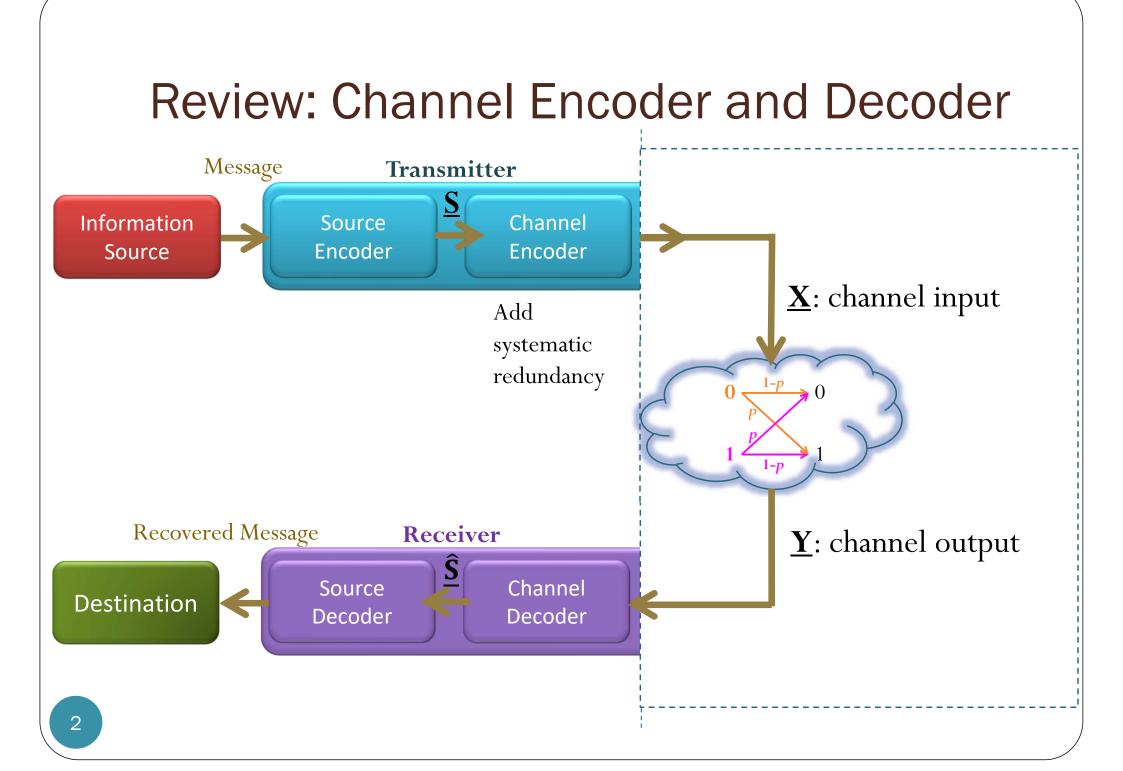
Digital Communication Systems ECS 452

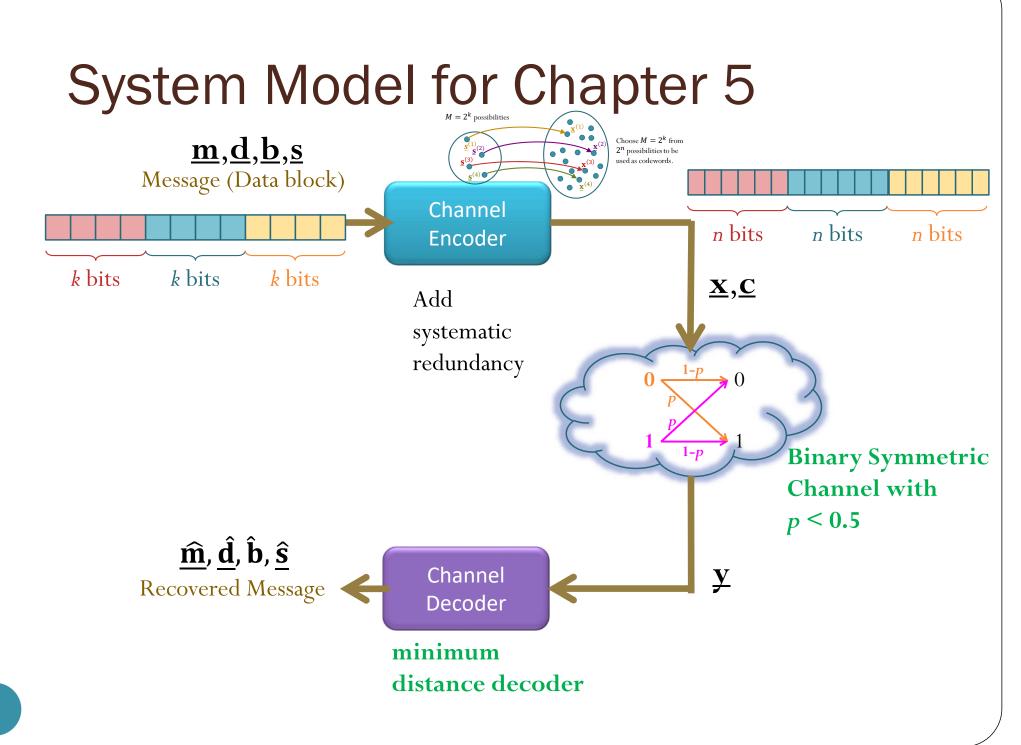
Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th

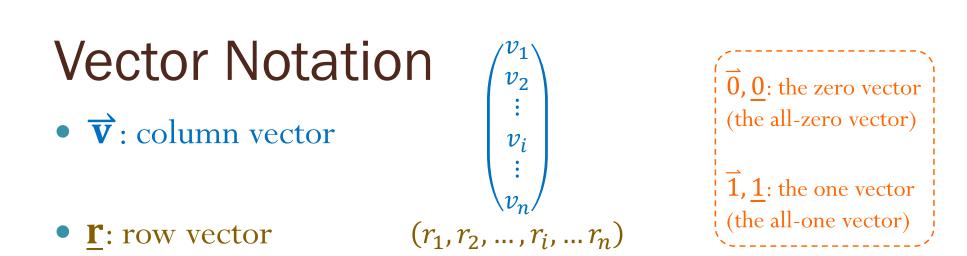
5. Channel Coding

Office Hours:

Check Google Calendar on the course website. Dr.Prapun's Office: 6th floor of Sirindhralai building, BKD

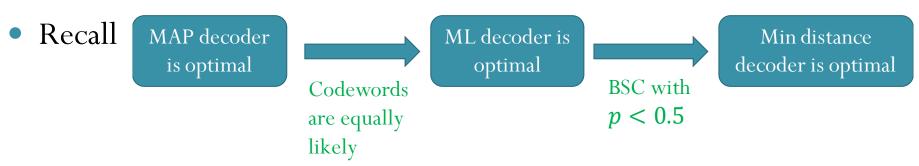




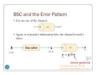


- Subscripts represent element indices inside individual vectors.
 - v_i and r_i refer to the i^{th} elements inside the vectors $\vec{\mathbf{v}}$ and $\underline{\mathbf{r}}$, respectively.
- When we have a list of vectors, we use superscripts in parentheses as indices of vectors.
 - $\overrightarrow{\mathbf{v}}^{(1)}$, $\overrightarrow{\mathbf{v}}^{(2)}$, ..., $\overrightarrow{\mathbf{v}}^{(M)}$ is a list of *M* column vectors
 - $\underline{\mathbf{r}}^{(1)}, \underline{\mathbf{r}}^{(2)}, \dots, \underline{\mathbf{r}}^{(M)}$ is a list of *M* row vectors
 - $\mathbf{\overline{v}}^{(i)}$ and $\mathbf{\underline{r}}^{(i)}$ refer to the *i*th vectors in the corresponding lists.

Channel Decoding



- 1. **MAP decoder** is the optimal decoder.
- 2. When the codewords are equally-likely, the **ML decoder** the same as the MAP decoder; hence it is also **optimal**.
- When the crossover probability of the BSC *p* is < 0.5, ML decoder is the same as the minimum distance decoder.
- In this chapter, we assume the use of minimum distance decoder.
 - $\hat{\mathbf{x}}(\underline{\mathbf{y}}) = \arg\min_{\mathbf{x}} d(\underline{\mathbf{x}}, \underline{\mathbf{y}})$
- Also, in this chapter, we will focus
 - less on probabilistic analysis,
 - but more on explicit codes.

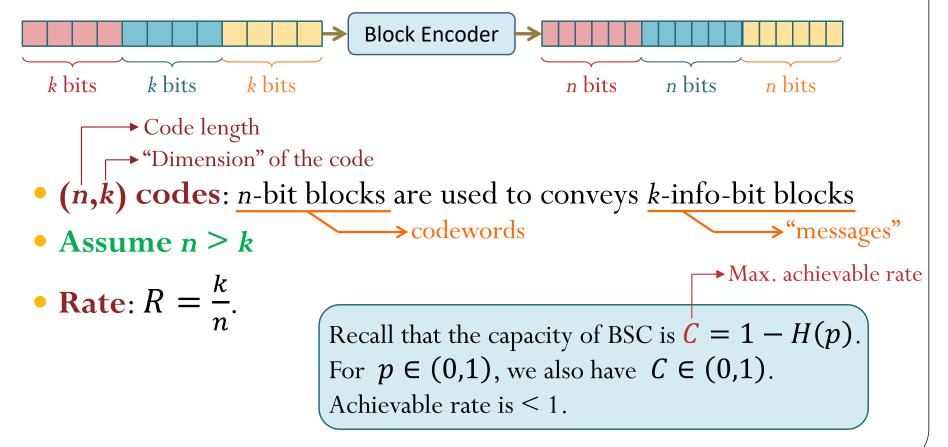


Digital Communication Systems ECS 452

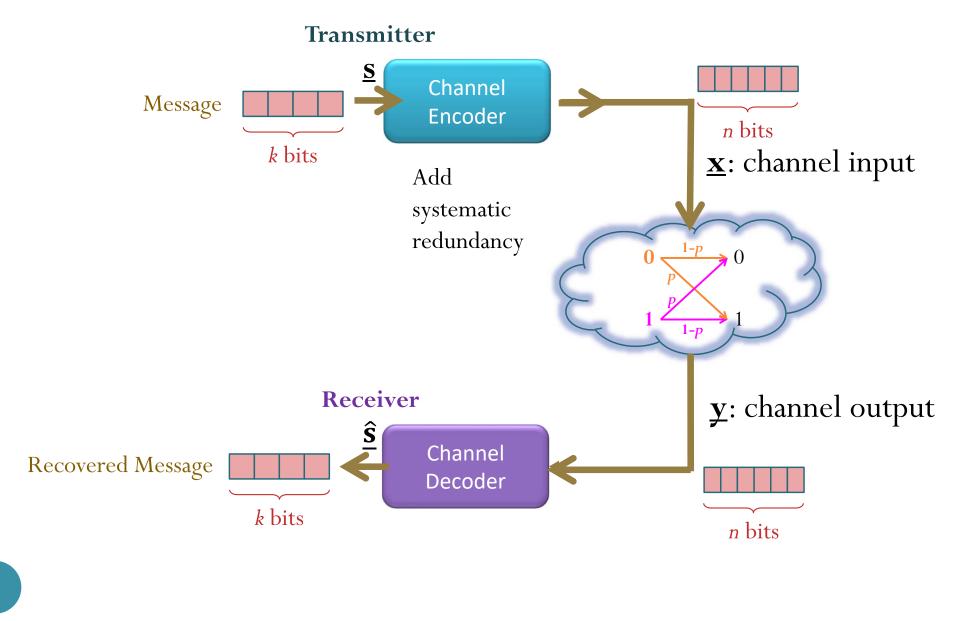
Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 5.1 Binary Linear Block Codes

Review: Block Encoding

- We mentioned the general form of channel coding over BSC.
- In particular, we looked at the general form of block codes.

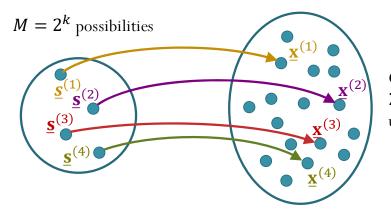


System Model for Section 5.1



\mathcal{C}

- C = the collection of all codewords for the code considered.
- Each *n*-bit block is selected from C.
- The message (data block) has k bits, so there are 2^k possibilities.
- A reasonable code would not assign the same codeword to different messages.
- Therefore, there are 2^k (distinct) codewords in \mathcal{C} .



Choose $M = 2^k$ from 2^n possibilities to be used as codewords.

• Ex. Repetition code with n = 3

Galois theory

GF(2)

• The construction of the codes can be expressed in matrix form using the following definition of **addition** and **multiplication** of bits:

	0			0	
0	0	1	$\overline{0}$	0	0
1	1	0	1	0	1

- These are **modulo-2** addition and **modulo-2** multiplication, respectively.
- The operations are the same as the **exclusive-or** (**XOR**) operation and the **AND** operation.
 - We will simply call them addition and multiplication so that we can use a matrix formalism to define the code.
- The two-element set {0, 1} together with this definition of addition and multiplication is a number system called a **finite field** or a **Galois field**, and is denoted by the label **GF(2)**.

Modulo operation

- The **modulo operation** finds the **remainder** after division of one number by another (sometimes called **modulus**).
- Given two positive numbers, *a* (the dividend) and *n* (the divisor),
- *a* modulo *n* (abbreviated as *a* mod *n*) is the remainder of the division of *a* by *n*.
- "83 mod 6" = 5
- "5 mod 2" = 1
 - In MATLAB, mod(5, 2) = 1.
- Congruence relation
 - $5 \equiv 1 \pmod{2}$

GF(2) and modulo operation

• Normal addition and multiplication (for 0 and 1):

	0			0	
0	0	1	0	0	0
1	1	2	1	0	1

• Addition and multiplication in GF(2):

GF(2)

 The construction of the codes can be expressed in matrix form using the following definition of addition and multiplication of bits:

	0			0	
0	0	1	$\overline{0}$	0	0
1	1	0	1	0	1

• Note that $x \oplus 0 = x$ $0 \oplus 0 = 0$ $1 \oplus 0 = 1$ $x \oplus 1 = \overline{x}$ $0 \oplus 1 = 1$ $1 \oplus 1 = 0$ $x \oplus x = 0$ $1 \oplus 1 = 0$

The property above implies -x = x

By definition, "-x" is something that, when added with x, gives 0.

• Extension: For vector and matrix, apply the operations to the elements the same way that addition and multiplication would normally apply (except that the calculations are all in GF(2)).

Examples

• Normal vector addition:

$$\begin{bmatrix} 1 & -1 & 2 & 1 \\ [-2 & 3 & 0 & 1 \end{bmatrix} + \\ = \begin{bmatrix} -1 & 2 & 2 & 2 \end{bmatrix}$$

• Vector addition in GF(2):

 $= \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \oplus$

Alternatively, one can also apply normal vector addition first, then apply "mod 2" to each element:

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} + \\ = \begin{bmatrix} 1 & 1 & 1 & 2 \end{bmatrix} \\ \mod 2 \\ \begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}$$

Examples

• Normal matrix multiplication:

 $\begin{pmatrix} 7 \times (-2) \end{pmatrix} + \begin{pmatrix} 4 \times 3 \end{pmatrix} + \begin{pmatrix} 3 \times (-7) \end{pmatrix} = -14 + 12 + (-21) \\ \begin{bmatrix} 7 & 4 & 3 \\ 2 & 5 & 6 \\ 1 & 8 & 9 \end{bmatrix} \begin{bmatrix} -2 & 4 \\ 3 & -8 \\ -7 & 6 \end{bmatrix} = \begin{bmatrix} -23 & 14 \\ -31 & 4 \\ -41 & -6 \end{bmatrix}$

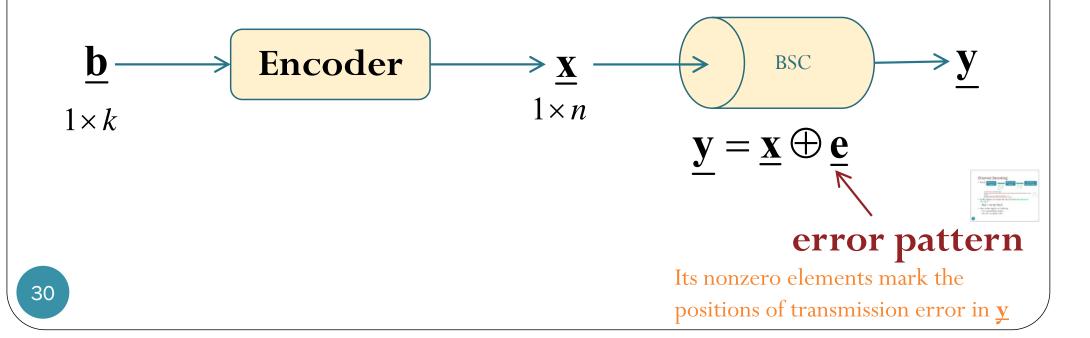
• Matrix multiplication in GF(2):

 $(1 \cdot 1) \oplus (0 \cdot 0) \oplus (1 \cdot 1) = 1 \oplus 0 \oplus 1$ Alternatively, one can also apply normal matrix multiplication first, then apply "mod 2" to each element: $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 2 & 2 \end{bmatrix} \xrightarrow{\text{mod } 2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$

BSC and the Error Pattern

• For one use of the channel,

• Again, to transmit *k* information bits, the channel is used *n* times.



Additional Properties in GF(2)

- The following statements are equivalent
 - 1. $a \oplus b = c$

2. $a \oplus c = b$

Having one of these is the same as having all three of them.

- 3. $b \oplus c = a$
- The following statements are equivalent
 - 1. $\mathbf{a} \oplus \mathbf{b} = \mathbf{c}$
 - 2. $\mathbf{a} \oplus \mathbf{c} = \mathbf{b}$
 - *3.* **b**⊕**c** = **a**

Having one of these is the same as having all three of them.

• In particular, because $\underline{\mathbf{x}} \oplus \underline{\mathbf{e}} = \mathbf{y}$, if we are given two quantities, we can find the third quantity by summing the other two.

Linear Block Codes

Definition: C is a (binary) linear (block) code if and only if C forms a vector (sub)space (over GF(2)). In case you forgot about the concept of vector space,...
Equivalently, this is the same as requiring that if <u>x</u>⁽¹⁾ and <u>x</u>⁽²⁾ ∈ C, then <u>x</u>⁽¹⁾⊕<u>x</u>⁽²⁾ ∈ C.
Note that any linear code C must contain 0

• Note that any (non-empty) linear code C must contain $\underline{0}$.

• Ex. The code that we considered in **Problem 5 of HW4** is $C = \{00000, 01000, 10001, 11111\}$

Is it a linear code?

Ex. Checking Linearity

- $C = \{00000, 01000, 10001, 11111\}$
- Step 1: Check that $0 \in C$.
 - OK for this example.
- Step 2: Check that iGr(1) = 1

if
$$\underline{\mathbf{x}}^{(1)}$$
 and $\underline{\mathbf{x}}^{(2)} \in \mathcal{C}$, then $\underline{\mathbf{x}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)} \in \mathcal{C}$.

\oplus	00000	01000	10001	11111
00000				
01000				
10001				
11111				

Ex. Checking Linearity

- We have checked that
 - $C = \{00000, 01000, 10001, 11111\}$

is not linear.

• Change one codeword in ${\mathcal C}$ to make the code linear.

\oplus	00000		
00000			

Linear Block Codes: Motivation (1)

- Why linear block codes are popular?
- Recall: General block **encoding**
 - Characterized by its codebook.
 - The table that lists all the 2^k mapping from the k-bit info-block <u>s</u> to the *n*-bit codeword <u>x</u> is called the **codebook**.
 - The *M* info-blocks are denoted by $\underline{\mathbf{s}}^{(1)}, \underline{\mathbf{s}}^{(2)}, \dots, \underline{\mathbf{s}}^{(M)}$. The corresponding *M* codewords are denoted by $\underline{\mathbf{x}}^{(1)}, \underline{\mathbf{x}}^{(2)}, \dots, \underline{\mathbf{x}}^{(M)}$, respectively.

index i	info-block $\underline{\mathbf{s}}$	codeword $\underline{\mathbf{x}}$
1	$\underline{\mathbf{s}}^{(1)} = 000\dots 0$	$\underline{\mathbf{x}}^{(1)} =$
2	$\underline{\mathbf{s}}^{(2)} = 000 \dots 1$	$\underline{\mathbf{x}}^{(2)} =$
:	•	•
M	$\underline{\mathbf{s}}^{(M)} = 111\dots 1$	$\mathbf{\underline{x}}^{(M)} =$



Choose $M = 2^k$ from 2^n possibilities to be used as codewords.

- Can be realized by combinational/combinatorial circuit.
 - If lucky, can used K-map to simplify the circuit.

Linear Block Codes: Motivation (2)

- Why linear block codes are popular?
- Linear block encoding is the <u>same as matrix multiplication</u>.
 - See next slide.
 - The matrix replaces the table for the codebook.
 - The size of the matrix is only $k \times n$ bits.
 - Compare this against the table (codebook) of size $2^k \times (k + n)$ bits for general block encoding.
- Linearity \Rightarrow easier implementation and analysis
- Performance of the class of linear block codes is similar to performance of the general class of block codes.
 - Can limit our study to the subclass of linear block codes without sacrificing system performance.

Example

• $C = \{00000, 01000, 10001, 11001\}$

• Let

$$\mathbf{G} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- Find $\underline{\mathbf{b}}\mathbf{G}$ when $\underline{\mathbf{b}} = [0 \ 0]$.
- Find $\underline{\mathbf{b}}\mathbf{G}$ when $\underline{\mathbf{b}} = [0 \ 1]$.
- Find $\underline{\mathbf{b}}\mathbf{G}$ when $\underline{\mathbf{b}} = [1 \ 0]$.
- Find $\underline{\mathbf{b}}\mathbf{G}$ when $\underline{\mathbf{b}} = [1 \ 1]$.

All possible two-bit vectors

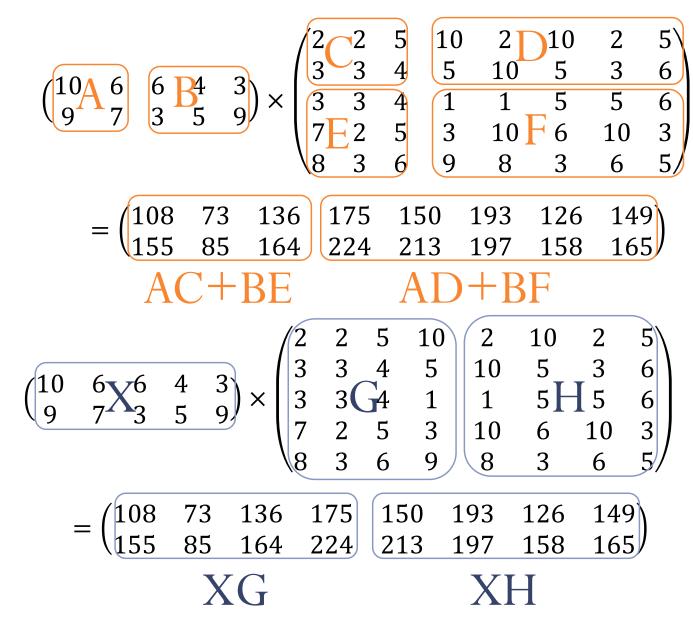
Block Matrices

- A block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices.
- Examples:

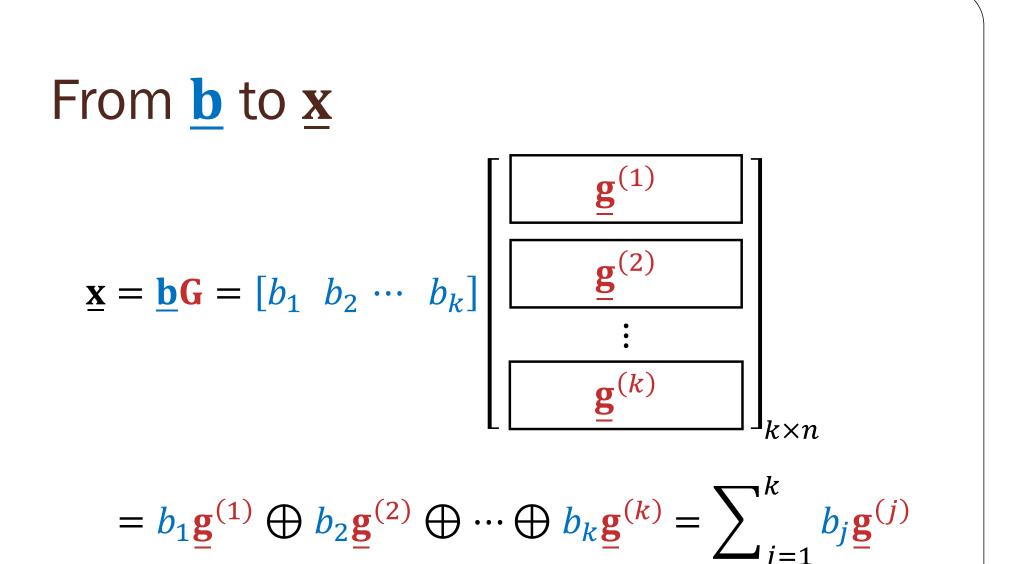
$$\begin{pmatrix} 10 \\ 9 \\ 7 \\ 7 \\ 3 \\ 5 \\ 9 \end{pmatrix} \begin{pmatrix} 6 \\ 8 \\ 3 \\ 5 \\ 9 \\ 9 \end{pmatrix}$$

9 6 8 5/ 3

Ex: Block Matrix Multiplications



44



- Any codeword is simply a linear combination of the rows of **G**.
 - The weights are given by the bits in the message **b**

Linear Combination in GF(2)

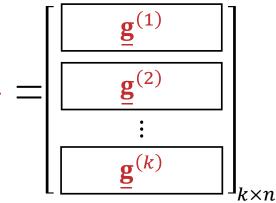
- A **linear combination** is an expression constructed from a set of terms by multiplying each term by a constant (weight) and adding the results.
- For example, a linear combination of *x* and *y* would be any expression of the form *ax* + *by*, where *a* and *b* are constants.
- General expression:

$$c_1 \underline{\mathbf{a}}^{(1)} + c_2 \underline{\mathbf{a}}^{(2)} + \dots + c_k \underline{\mathbf{a}}^{(k)}$$

• In GF(2), *C_i* is limited to being 0 or 1. So, a linear combination is simply a sum of a sub-collection of the vectors.

Linear Block Codes: Generator Matrix

For any linear code, there is a matrix G =



called the **generator matrix** such that, for any codeword $\underline{\mathbf{x}}$, there is a message vector $\underline{\mathbf{b}}$ which produces $\underline{\mathbf{x}}$ by $\underline{\mathbf{x}} = \underline{\mathbf{b}}\mathbf{G} = \sum_{i=1}^{k} b_i \underline{\mathbf{g}}^{(j)}$

(1) Any codeword can be expressed as a linear combination of the rows of **G** Note also that, given a matrix **G**, the (block of \mathbf{G} and $\mathbf{G$

(2)
$$C = \{\underline{\mathbf{b}}\mathbf{G}: \underline{\mathbf{b}} \in \{0,1\}^k\}$$

Note also that, given a matrix \mathbf{G} , the (block) code that is constructed by (2) is always linear.

<u>Fact</u>: If a code is generated by plugging in every possible $\underline{\mathbf{b}}$ into $\underline{\mathbf{x}} = \underline{\mathbf{b}}\mathbf{G}$, then the code will automatically be linear.

<u>Proof</u>

If **G** has k rows. Then, **b** will have k bits. We can list them all as $\underline{\mathbf{b}}^{(1)}, \underline{\mathbf{b}}^{(2)}, \dots, \underline{\mathbf{b}}^{(2^k)}$. The corresponding codewords are

$$\mathbf{\underline{x}}^{(i)} = \mathbf{\underline{b}}^{(i)}\mathbf{G}$$
 for $i = 1, 2, \dots, 2^k$.

Let's take two codewords, say, $\underline{\mathbf{x}}^{(i_1)}$ and $\underline{\mathbf{x}}^{(i_2)}$. By construction, $\underline{\mathbf{x}}^{(i_1)} = \underline{\mathbf{b}}^{(i_1)}\mathbf{G}$ and $\underline{\mathbf{x}}^{(i_2)} = \underline{\mathbf{b}}^{(i_2)}\mathbf{G}$. Now, consider the sum of these two codewords:

$$\underline{\mathbf{x}}^{(i_1)} \oplus \underline{\mathbf{x}}^{(i_2)} = \underline{\mathbf{b}}^{(i_1)} \mathbf{G} \oplus \underline{\mathbf{b}}^{(i_2)} \mathbf{G} = \left(\underline{\mathbf{b}}^{(i_1)} \oplus \underline{\mathbf{b}}^{(i_2)}\right) \mathbf{G}$$

Note that because we plug in *every possible* $\underline{\mathbf{b}}$ to create this code, we know that $\underline{\mathbf{b}}^{(i_1)} \oplus \underline{\mathbf{b}}^{(i_2)}$ should be one of these $\underline{\mathbf{b}}$. Let's suppose $\underline{\mathbf{b}}^{(i_1)} \oplus \underline{\mathbf{b}}^{(i_2)} = \underline{\mathbf{b}}^{(i_3)}$ for some $\underline{\mathbf{b}}^{(i_3)}$. This means

$$\underline{\mathbf{x}}^{(i_1)} \oplus \underline{\mathbf{x}}^{(i_2)} = \underline{\mathbf{b}}^{(i_3)} \mathbf{G}$$

But, again, by construction, $\underline{\mathbf{b}}^{(i_3)}\mathbf{G}$ gives a codeword $\underline{\mathbf{x}}^{(i_3)}$ in this code. Because the sum of any two codewords is still a codeword, we conclude that the code is linear.

Linear Block Code: Example $\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$

• Find the codeword for the message $\underline{\mathbf{b}} = [1 \ 0 \ 0]$

• Find the codeword for the message $\underline{\mathbf{b}} = [0 \ 1 \ 1]$

50

$\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix} \qquad \underbrace{\mathbf{x}} = \underbrace{\mathbf{b}}\mathbf{G} = (b_1 \ b_2 \ b_3) \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix} = (b_1, b_2, b_3, b_1 \oplus b_3, b_2 \oplus b_3, b_1 \oplus b_2)$

	<u>b</u>				<u>7</u>	<u>K</u>		
0	0	0	0	0	0	0	0	0
0	0	1	0	0	1	1	1	0
0	1	0	0	1	0	0	1	1
0	1	1	0	1	1	1	0	1
1	0	0	1	0	0	1	0	1
1	0	1	1	0	1	0	1	1
1	1	0	1	1	0	1	1	0
1	1	1	1	1	1	0	0	0

MATLAB: Codebook

```
G = [1 0 0 1 0 1; 0 1 0 0 1 1; 0 0 1 1 1 0];
[B C] = blockCodebook(G)
```

```
function [B C] = blockCodebook(G)
[k n] = size(G);
% All data words
B = dec2bin(0:2^k-1)-'0';
% All codewords
C = mod(B*G,2);
end
```

 $\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$

	<u>b</u>				2	<u>K</u>		
0	0	0	0	0	0	0	0	0
0	0	1	0	0	1	1	1	0
0	1	0	0	1	0	0	1	1
0	1	1	0	1	1	1	0	1
1	0	0	1	0	0	1	0	1
1	0	1	1	0	1	0	1	1
1	1	0	1	1	0	1	1	0
1	1	1	1	1	1	0	0	0

Linear Block Code: Example $\mathbf{G} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ • Find the codeword for the message $\mathbf{b} = [1 \ 0 \ 0 \ 0]$

• Find the codeword for the message $\underline{\mathbf{b}} = [0 \ 1 \ 1 \ 0]$

53

MATLAB: Codebook

```
function [B C] = blockCodebook(G)
[k n] = size(G);
% All data words
B = dec2bin(0:2^k-1)-'0';
% All codewords
C = mod(B*G,2);
end
```

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

	<u>b</u>)					X			
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	1	0	1	0	1
0	0	1	0	0	0	1	0	1	1	
0 0 0	0	1	1	1	0	0	0	0	1	0 1 0 1 0 1 0 1 0
0	1	0	0	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0	1
0	1	1	0	1	0	1	1	0	1	0
0	1	1	1	0	0	0	1	1	1	1
1 1	0	0	0	1	1	1	0	0	0	0
1	0	0	1	0	1	0	0	1	0	1
1	0	1	0	1	1	0	0	1	1	0
1	0	1	1	0	1	1	0	0	1	1
1	1	0	0	0	1	1	1	1	0	1 0 1
1	1	0	1	1	1	0	1	0	0	1
1	1	1	0	0	1	0	1	0	1	0
1	1	1	1	1	1	1	1	1	1	1

Review: Linear Block Codes

- Given a list of codewords for a code \mathcal{C} , we can determine whether \mathcal{C} is linear by
 - Definition: if $\underline{\mathbf{x}}^{(1)}$ and $\underline{\mathbf{x}}^{(2)} \in \mathcal{C}$, then $\underline{\mathbf{x}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)} \in \mathcal{C}$

• Shortcut:

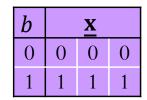
- First check that C must contain <u>0</u>.
- Then, check only pairs of the non-zero codewords.
 - One check = three checks
- Codewords can be generated by a **generator matrix**

• $\underline{\mathbf{x}} = \underline{\mathbf{b}}\mathbf{G} = \sum_{i=1}^{k} b_i \underline{\mathbf{g}}^{(i)}$ where $\underline{\mathbf{g}}^{(i)}$ is the *i*th row of **G**

- Codebook can be generated by
 - working **row-wise**: generating each codeword one-by-one, or
 - working column-wise: first, reading, from G, how each bit in the codeword is created from the bits in <u>b</u>; then, in the codebook, carry out the operations on columns <u>b</u>.

Linear Block Codes: Examples

- **Repetition code**: $\underline{\mathbf{x}} = \begin{bmatrix} b & b & \cdots & b \end{bmatrix}$
 - $\mathbf{G} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$ • $\underline{\mathbf{x}} = \underline{\mathbf{b}}\mathbf{G} = b\mathbf{G} = \begin{bmatrix} b & b & \cdots & b \end{bmatrix}$ • $R = \frac{k}{n} = \frac{1}{n}$



• Single-parity-check code: <u>x</u> =

•
$$\mathbf{G} = [\mathbf{I}_{k \times k}; \underline{\mathbf{1}}^T]$$

• $R = \frac{k}{n} = \frac{k}{k+1}$

$$\underline{\mathbf{b}}; \sum_{j=1}^{k} b_{j}$$
parity bit
$$\frac{\underline{\mathbf{b}} \cdot \underline{\mathbf{x}}}{0 \quad 0 \quad 0 \quad 0}$$

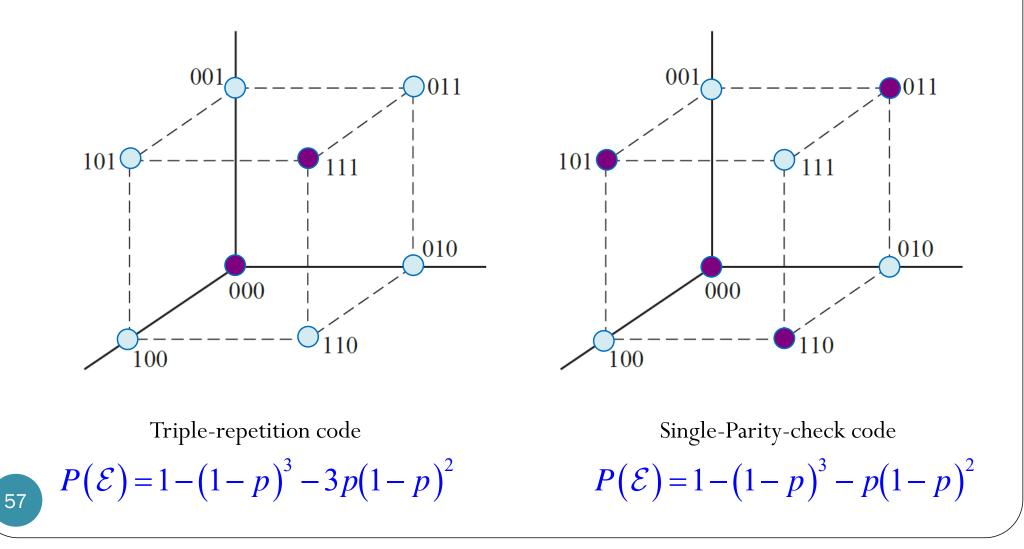
$$0 \quad 1 \quad 0 \quad 1 \quad 1$$

$$1 \quad 0 \quad 1 \quad 0 \quad 1$$

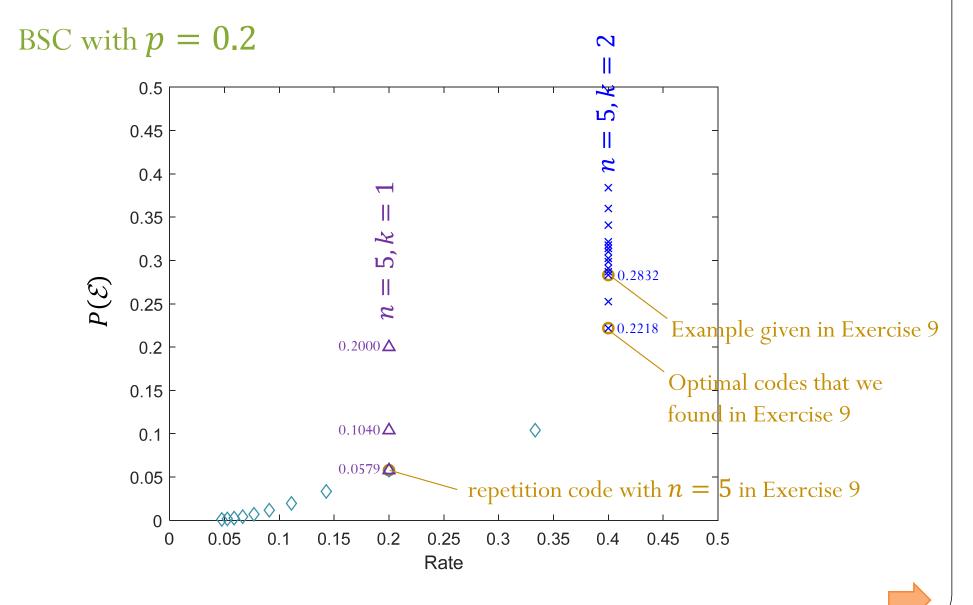
$$1 \quad 1 \quad 1 \quad 0$$

Vectors representing 3-bit codewords

Representing the codewords in the two examples on the previous slide as vectors:

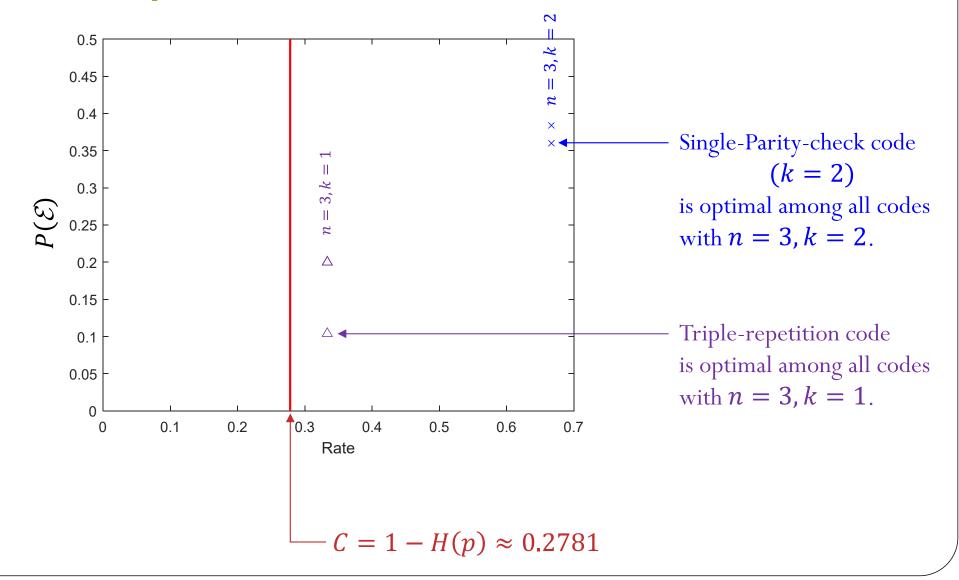


Recall: Achievable Performance



Achievable Performance

BSC with p = 0.2



Related Idea:

Even Parity vs. Odd Parity

- Parity bit checking is used occasionally for transmitting ASCII characters, which have 7 bits, leaving the 8th bit as a parity bit.
- Two options:
 - Even Parity: Added bit ensures an <u>even</u> number of 1s in each codeword.
 - A: 1000001**0**
 - Odd Parity: Added bit ensures an <u>odd</u> number of 1s in each codeword.
 - A: 10000011

Even Parity vs. Odd Parity

- Even parity and odd parity are properties of a codeword (a vector), not a bit.
- Note: The generator matrix $\mathbf{G} = [\mathbf{I}_{k \times k}; \underline{\mathbf{1}}^T]$ previously considered produces even parity codeword

$$\underline{\mathbf{x}} = \begin{bmatrix} \underline{\mathbf{b}} \\ \vdots \\ j=1 \end{bmatrix}; \sum_{j=1}^{k} b_j$$

• Q: Consider a code that uses odd parity. Is it linear?

Error Control using Parity Bit

• If an odd number of bits (including the parity bit) are transmitted incorrectly, the parity will be incorrect, thus indicating that a parity error occurred in the transmission.

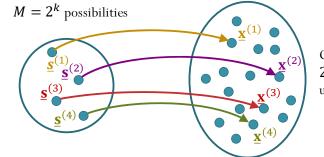
• Ex.

- Suppose we use even parity.
- Consider the codeword $\underline{\mathbf{x}} = 10000010$

Error Detection

Two types of **error control**:

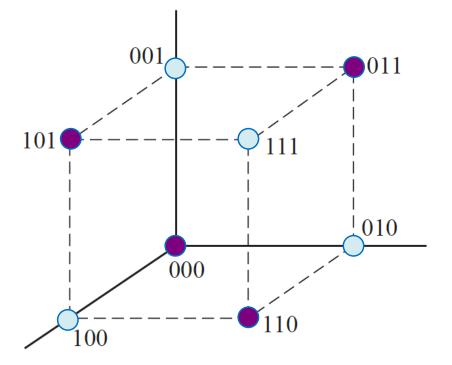
- 1. error detection
- 2. error correction
- **Error detection**: the determination of whether errors are present in a received word $M = 2^k \text{ possibilities}$
 - usually by checking whether the received word is one of the valid codewords.



- Choose $M = 2^k$ from 2^n possibilities to be used as codewords.
- When a two-way channel exists between source and destination, the receiver can request **retransmission** of information containing detected errors.
 - This error-control strategy is called **automatic-repeat-request (ARQ)**.
- An error pattern is **undetectable** if and only if it causes the received word to be a valid codeword other than that which was transmitted.
 - Ex: In single-parity-check code, error will be undetectable when the number of bits in error is even.

Example: (3,2) Single-parity-check code

- If we receive 001, 111, 010, or 100, we know that something went wrong in the transmission.
- Suppose we transmitted 101 but the error pattern is 110.
 - The received vector is 011
 - 011 is still a valid codeword.
 - The error is undetectable.



Error Correction

- In **FEC** (forward error correction) system, when the decoder detects error, the arithmetic or algebraic structure of the code is used to determine which of the valid codewords was transmitted.
- It is possible for a detectable error pattern to cause the decoder to select a codeword other than that which was actually transmitted. The decoder is then said to have committed a **decoding error**.

Square array for error correction by parity checking. $\mathbf{b} = \begin{bmatrix} b & b \end{bmatrix}$

- The codeword is formed by arranging *k* message bits in a square array whose rows *and* columns are checked by $2\sqrt{k}$ parity bits.
- A transmission error in one message bit causes a row and column parity failure with the error at the intersection, so single errors can be corrected.

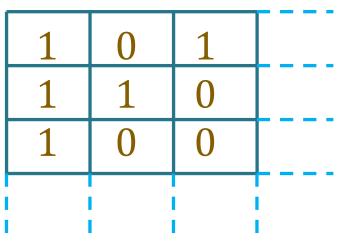
$$\underline{\mathbf{b}} = [b_1, b_2, \dots, b_9]$$

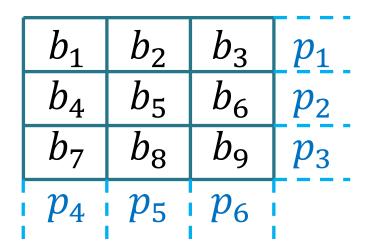
$$\underline{\mathbf{x}} = [b_1, b_2, \dots, b_9, p_1, p_2, \dots, p_6]$$

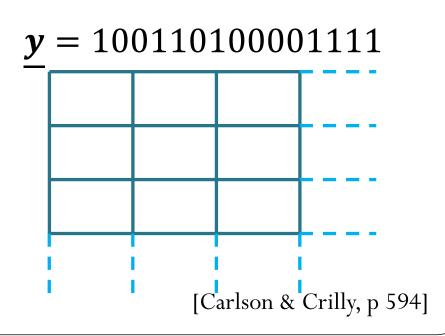
[Carlson & Crilly, p 594]

Example: square array

- *k* = 9
- $2\sqrt{9} = 6$ parity bits.
- $\underline{\mathbf{b}} = [b_1, b_2, \dots, b_9]$
 - = 101110100
- $\underline{\mathbf{x}} = [b_1, b_2, \dots, b_9, p_1, p_2, \dots, p_6]$
 - = 101110100___







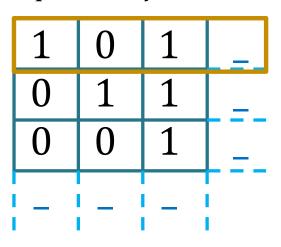
Review: Even Parity

- A binary vector (or a collection of 1s and 0s) has **even parity** if and only if the number of 1s in there is even.
 - Suppose we are given the values of all the bits except one bit.
 - We can force the vector to have even parity by setting the value of the remaining bit to be the sum of the other bits.

Single-parity-check code

[10110]

Square array



Weight and Distance

- The **weight** of a vector is the number of nonzero coordinates in the vector.
 - The weight of a vector $\underline{\mathbf{x}}$ is commonly written as $w(\underline{\mathbf{x}})$.
 - Ex. w(010111) =
 - For BSC with cross-over probability p < 0.5, error pattern with smaller weights (less #1s) are more likely to occur.
- The **Hamming distance** between two *n*-bit blocks is the number of coordinates in which the two blocks differ.
 - Ex. *d*(010111,011011) =
 - Note:
 - The Hamming distance between any two vectors equals the weight of their sum.
 - The Hamming distance between the transmitted codeword $\underline{\mathbf{x}}$ and the received vector $\underline{\mathbf{y}}$ is the same as the weight of the corresponding error pattern $\underline{\mathbf{e}}$.

Probability of Error Patterns

- Recall: We assume that the channel is **BSC** with crossover probability **p**.
- For the discrete memoryless channel that we have been considering since Chapter 3,
 - the probability that error pattern $\underline{\mathbf{e}} = 00101$ is (1-p)(1-p)p(1-p)p.
 - Note also that the error pattern is independent from the transmitted vector <u>X</u>
- In general, from Section 3.4, the probability the error pattern <u>e</u> occurs is

$$p^{d(\underline{\mathbf{x}},\underline{\mathbf{y}})}(1-p)^{n-d(\underline{\mathbf{x}},\underline{\mathbf{y}})} = \left(\frac{p}{1-p}\right)^{d(\underline{\mathbf{x}},\underline{\mathbf{y}})}(1-p)^n = \left(\frac{p}{1-p}\right)^{w(\underline{\mathbf{e}})}(1-p)^n$$

• If we assume *p* < 0.5,

the error patterns that have larger weights are less likely to occur.

• This also supports the use of minimum distance decoder.

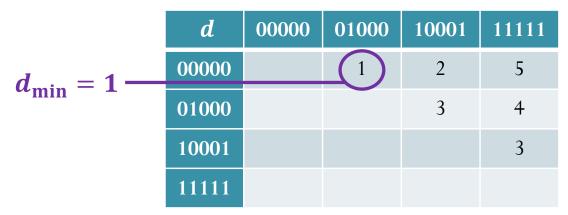
Review: Minimum Distance (d_{min})

The minimum distance (d_{\min}) of a block code is the minimum Hamming distance between all pairs of <u>distinct</u> codewords.

• Ex. Problem 5 of HW4:

Problem 5. A channel encoder map blocks of two bits to five-bit (channel) codewords. The four possible codewords are 00000, 01000, 10001, and 11111. A codeword is transmitted over the BSC with crossover probability p = 0.1.

(a) What is the minimum (Hamming) distance d_{min} among the codewords?



MATLAB: Distance Matrix and d_{min}

function D = distAll(C)

```
This can be used to find d_{\min} for all block codes.
M = size(C,1);
                           There is no assumption about linearity of the
D = zeros(M,M);
                           code. Soon, we will see that we can simplify the
for i = 1:M-1
                           calculation when the code is known to be linear.
    for j = (i+1):M
         D(i,j) = sum(mod(C(i,:)+C(j,:),2));
    end
end
                                     >> C=[0 0 0 0; 0 1 0 0; ...
D = D+D';
                                           1 0 0 0 1; 1 1 1 1 1];
                                     >> distAll(C)
function dmin = dmin_block(C)
                                     ans =
                                            1 2
                                          0
                                                          5
D = distAll(C);
                                          1 0 3 4
Dn0 = D(D>0);
                                            3 0
                                          2
                                                          3
                                          5
                                               4
                                                     3
                                                         0
dmin = min(Dn0);
```

```
>> dmin = dmin_block(C)
dmin =
1
```

d_{\min} for linear block code

- For any linear block code, the minimum distance (d_{min}) can be found from the minimum weight of its nonzero codewords.
 - So, instead of checking $\binom{2^k}{2}$ pairs, simply check the weight of the 2^k codewords.

```
function dmin = dmin_linear(C)
w = sum(C,2);
w = w([w>0]);
dmin = min(w);
```

Proof

Because the code is linear, for any two distinct codewords $\underline{\mathbf{c}}^{(1)}$ and $\underline{\mathbf{c}}^{(2)}$, we know that $\underline{\mathbf{c}}^{(1)} \oplus \underline{\mathbf{c}}^{(2)} \in \mathcal{C}$; that is $\underline{\mathbf{c}}^{(1)} \bigoplus \underline{\mathbf{c}}^{(2)} = \underline{\mathbf{c}}$ for some nonzero $\underline{\mathbf{c}} \in \mathcal{C}$. Therefore,

$$d(\underline{\mathbf{c}}^{(1)}, \underline{\mathbf{c}}^{(2)}) = w(\underline{\mathbf{c}}^{(1)} \oplus \underline{\mathbf{c}}^{(2)}) = w(\underline{\mathbf{c}})$$
 for some nonzero $\underline{\mathbf{c}} \in \mathcal{C}$.

This implies

$$\min_{\underline{\mathbf{c}}^{(1)},\underline{\mathbf{c}}^{(2)}\in\mathcal{C}} d(\underline{\mathbf{c}}^{(1)},\underline{\mathbf{c}}^{(2)}) \geq \min_{\underline{\mathbf{c}}\in\mathcal{C}.} w(\underline{\mathbf{c}}).$$
$$\underline{\underline{\mathbf{c}}^{(1)}\neq\underline{\mathbf{c}}^{(2)}} \qquad \underline{\underline{\mathbf{c}}^{\in\mathcal{C}.}}$$

Note that inequality is used here because we did not show that $\underline{c}^{(1)} \oplus \underline{c}^{(2)}$ can produce all possible nonzero $\mathbf{c} \in \mathcal{C}$. $\min_{\underline{\mathbf{c}}^{(1)},\underline{\mathbf{c}}^{(2)}\in\mathcal{C}\atop\underline{\mathbf{c}}^{(1)}\neq\underline{\mathbf{c}}^{(2)}} d(\underline{\mathbf{c}}^{(1)},\underline{\mathbf{c}}^{(2)}) \stackrel{\bigstar}{=} \min_{\underline{\mathbf{c}}\in\mathcal{C}.\atop\underline{\mathbf{c}}\neq\underline{\mathbf{0}}} w(\underline{\mathbf{c}})$

Next, for any nonzero
$$\underline{\mathbf{c}} \in \mathcal{C}$$
, note that

$$d(\underline{\mathbf{c}},\underline{\mathbf{0}}) = w(\underline{\mathbf{c}} \oplus \underline{\mathbf{0}}) = w(\underline{\mathbf{c}}).$$

Note that **<u>c</u>**, **<u>0</u>** is just one possible pair of two distinct codewords. This implies

$$\min_{\substack{\underline{\mathbf{c}}^{(1)},\underline{\mathbf{c}}^{(2)}\in\mathcal{C}\\\underline{\mathbf{c}}^{(1)}\neq\underline{\mathbf{c}}^{(2)}}} d(\underline{\mathbf{c}}^{(1)},\underline{\mathbf{c}}^{(2)}) \stackrel{\mathbf{I}}{\leq} \min_{\substack{\underline{\mathbf{c}}\in\mathcal{C}\\\underline{\mathbf{c}}\neq\underline{\mathbf{0}}}} w(\underline{\mathbf{c}}).$$

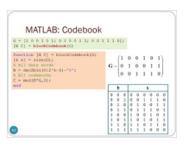
Example

$$\mathbf{G} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

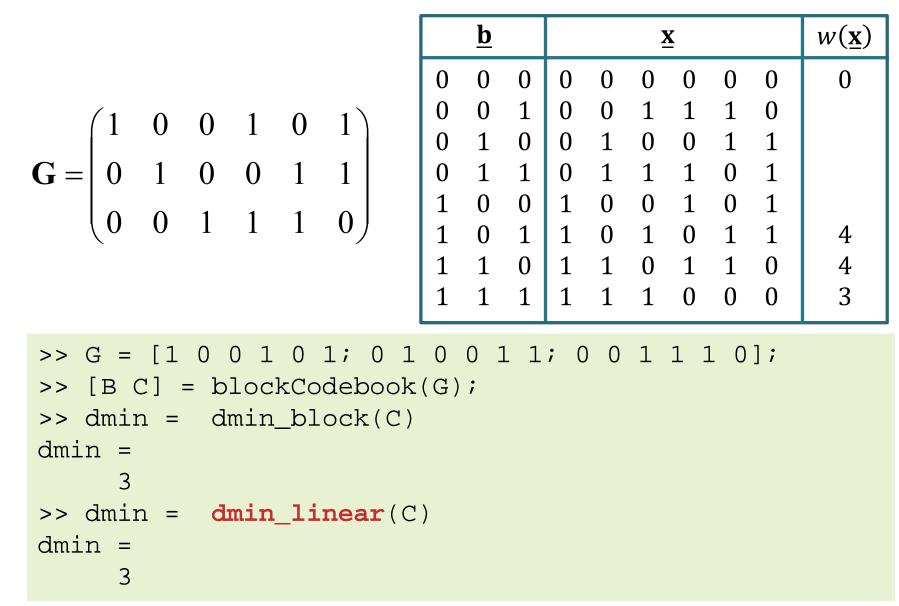
$$\mathbf{x} = \mathbf{b}\mathbf{G} = \begin{bmatrix} b_1 & b_2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

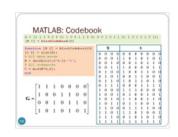
$$= \begin{bmatrix} b_2 & b_1 & b_1 & b_1 \oplus b_2 \end{bmatrix}$$

 \oplus



Example

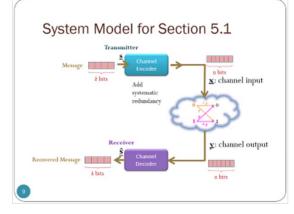




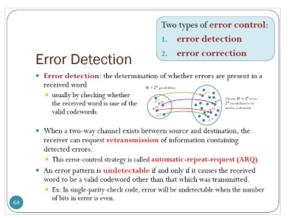
Example

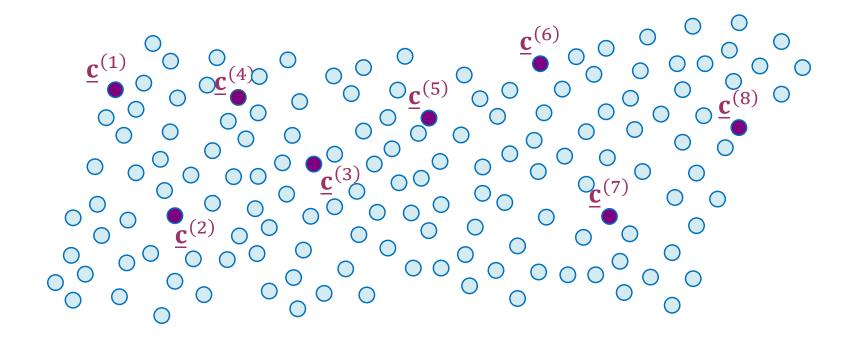
										<u>b</u>			<u>X</u>						$w(\underline{\mathbf{x}})$		
		- 1	1	1	Ο	Ο	Δ	\mathbf{O}	٦	0	0	0	0	0	0	0	0	0	0	0	0
		T	I	T	U	U	U	U		0	0	0	1	1	0	1	0	1	0	1	4
		1	Δ	Δ	1	1	Δ	Δ		0	0	1	0	0	0	1	0	1	1	0	3
		T	U	U	I	I	U	U		0	0	1	1	1	0	0	0	0	1	1	3
G	=	Δ	Δ	1	Δ	1	1	Δ		0	1	0	0	1	0	0	1	1	0	0	3
		U	U	I	U	I	Ţ	U		0	1	0	1	0	0	1	1	0	0	1	3
		1	Δ	1	Δ	1	Δ	1		0	1	1	0	1	0	1	1	0	1	0	4
		_ 1	U	I	U	I	U	1		0	1	1	1	0	0	0	1	1	1	1	4
										1	0	0	0	1	1	1	0	0	0	0	3
										1	0	0	1	0	1	0	0	1	0	1	3
	>> (); 1 0			••		1	0	1	0	1	1	0	0	1	1	0	4
	0 0 1 0 1 1 0; 1 0 1 0 1 0 1]; >> [B C] = blockCodebook(G);								1	0	1	1	0	1	1	0	0	1	1	4	
	>> dmin	lmin = n =	dmin	_linea	ır(C)					1	1	0	0	0	1	1	1	1	0	0	4
		3								1	1	0	1	1	1	0	1	0	0	1	4
	>> dmin	dmin = 1 =	dmin	_block	2(C)					1	1	1	0	0	1	0	1	0	1	0	3
		3								1	1	1	1	1	1	1	1	1	1	1	7

Visual Interpretation of *d*_{min}



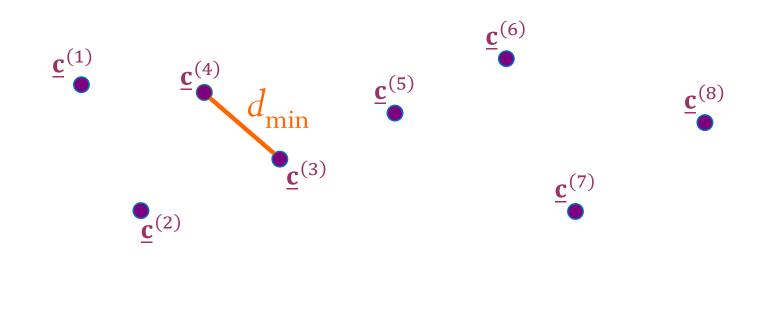
Recall: Codebook construction Choose $M = 2^k$ from 2^n possibilities to be used as codewords.





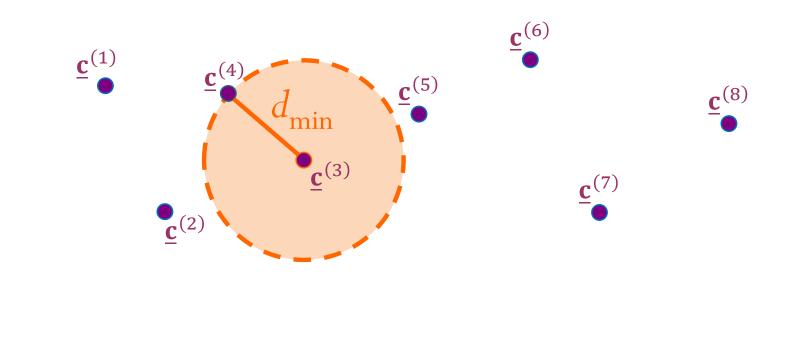
Visual Interpretation of d_{min}

- Consider all the (valid) codewords (in the codebook).
- We can find the distances between them.
- We can then find d_{\min} .



Visual Interpretation of d_{min}

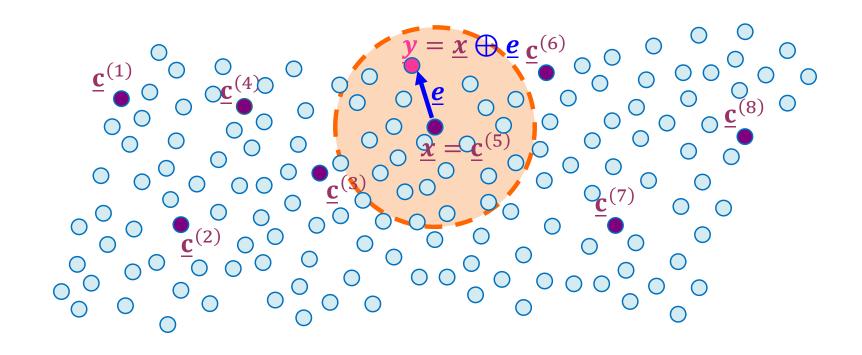
- When we draw a circle (sphere, hypersphere) of radius d_{\min} around any codeword, we know that there can not be another codeword inside this circle.
- The closest codeword is at least d_{\min} away.



d_{min} and Error Detection

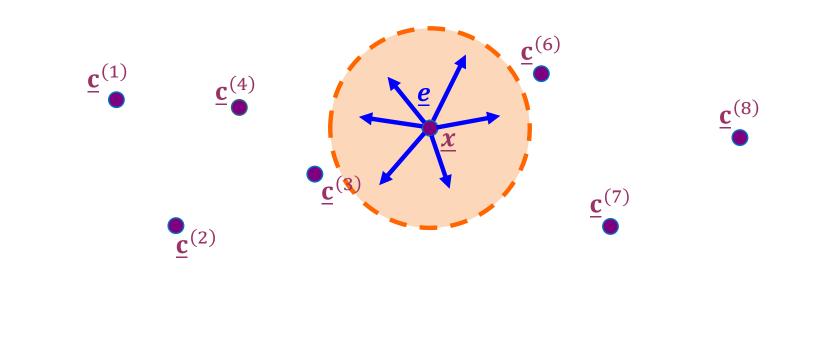
- Suppose codeword $\underline{\mathbf{c}}^{(5)}$ is chosen to be transmitted; that is $\underline{x} = \underline{\mathbf{c}}^{(5)}$.
- The received vector \boldsymbol{y} can be calculated from

 $\underline{y} = \underline{x} \oplus \underline{e}.$



d_{min} and Error Detection

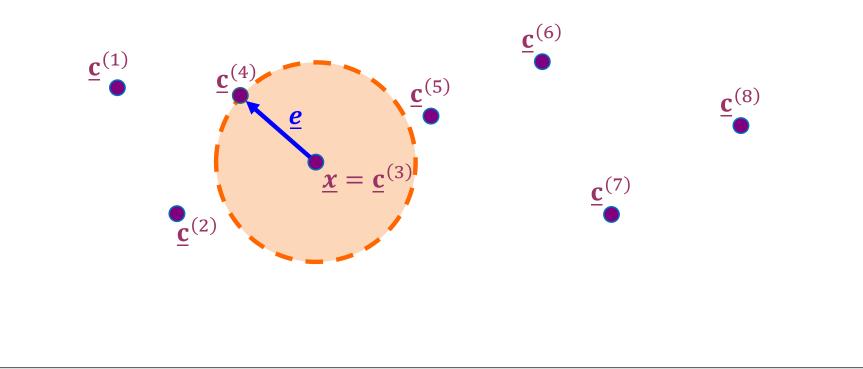
• When $d_{\min} > w$, there is no way that w errors can change a valid codeword into another valid codeword.



d_{\min} and Error Detection

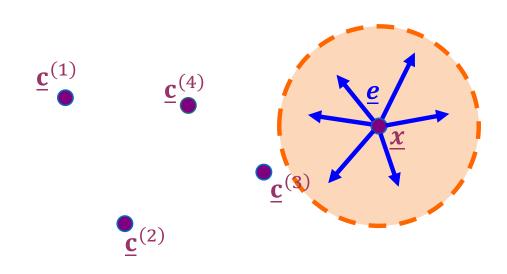
• For some codewords,

when $d_{\min} = w$, it is possible that w errors can change a valid codeword into another valid codeword.



d_{min} and Error Detection

- To be able to **detect** *all w*-bit errors, we need $d_{\min} \ge w + 1$.
 - With such a code there is no way that *w* errors can change a valid codeword into another valid codeword.
 - When the receiver observes an illegal codeword, it can tell that a transmission error has occurred.

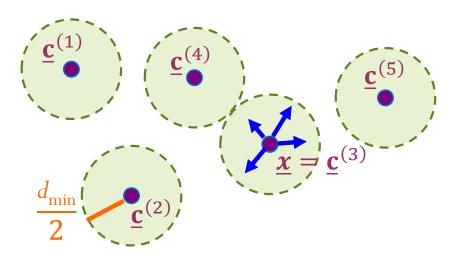


When $d_{\min} > w$, there is no way that W errors can change a valid codeword into another valid codeword.

When $d_{\min} \leq w$, it is possible that w errors can change a valid codeword into another valid codeword.

d_{\min} is an important quantity

- To be able to **correct** *all w*-bit errors, we need $d_{\min} \ge 2w + 1$.
 - This way, the legal codewords are so far apart that even with *w* changes, the original codeword is still *closer* than any other codeword.



d_{\min} : two important facts

- For any linear block code, the minimum distance (d_{min}) can be found from the minimum weight of its nonzero codewords.
 - So, instead of checking $\binom{2^k}{2}$ pairs, simply check the weight of the 2^k codewords.
- A code with minimum distance d_{\min} can
 - detect all error patterns of weight $w \leq d_{\min}$ -1.
 - correct all error patterns of weight $w \leq \left| \frac{d_{\min} 1}{2} \right|$.

the floor function

Example

Repetition code with n = 5

- We have seen that it has $d_{\min} = 5$.
- It can detect (at most) _____ errors.
- It can correct (at most) _____ errors.

	num distan Həmming dis				
Ex. Pro	blem 5 of H	W4			
four possible o the BSC with	A channel encoder maj odewords are 00000, 0 crossover probability	1000, 10001, p = 0.1.	and 1111	L. A codeword is	transmitted over
(a) What is	d 00000	-	_	ing the codewor	ds?
	00000		:	5	
$d_{\min} = 1 -$	01000	\sim	3	+	
	10001			a	
	11111				

